261 research outputs found
Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices
The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included
Multimodal Dependent Type Theory
We introduce MTT, a dependent type theory which supports multiple modalities.
MTT is parametrized by a mode theory which specifies a collection of modes,
modalities, and transformations between them. We show that different choices of
mode theory allow us to use the same type theory to compute and reason in many
modal situations, including guarded recursion, axiomatic cohesion, and
parametric quantification. We reproduce examples from prior work in guarded
recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a
simple and usable syntax whose instantiations intuitively correspond to
previous handcrafted modal type theories. In some cases, instantiating MTT to a
particular situation unearths a previously unknown type theory that improves
upon prior systems. Finally, we investigate the metatheory of MTT. We prove the
consistency of MTT and establish canonicity through an extension of recent
type-theoretic gluing techniques. These results hold irrespective of the choice
of mode theory, and thus apply to a wide variety of modal situations
Partial Description of Quantum States
One of the most central and controversial element of quantum mechanics is the
use of non zero vectors of a Hilbert space (or, more generally, of one
dimension subspaces) for representing the state of a quantum system. In
particular, the question whether such a representation is complete has been
debated since almost the early days of quantum mechanics. In this article, we
develop an alternate way to formalize knowledge about the state of quantum
systems, based solely on experimentally accessible elements, namely on outcomes
of finite measurements. We introduce what we call partial description which,
given a feasible measurement, indicates some outcomes which are known to be
impossible (i.e. known to have a probability equal to 0 to occur) and hence
have to be discarded. Then, we introduce partial states (which are partial
descriptions providing as much information as possible) and compare this way to
describe quantum states to the orthodox one, using vector rays. Finally, we
show that partial states allow to describe quantum states in a strictly more
expressive way that the orthodox description does
Quantum probabilities as Dempster-Shafer probabilities in the lattice of subspaces.
yesThe orthocomplemented modular lattice of subspaces L[H(d)] , of a quantum system with d-dimensional Hilbert space H(d), is considered. A generalized additivity relation which holds for Kolmogorov probabilities is violated by quantum probabilities in the full lattice L[H(d)] (it is only valid within the Boolean subalgebras of L[H(d)] ). This suggests the use of more general (than Kolmogorov) probability theories, and here the Dempster-Shafer probability theory is adopted. An operator D(H1,H2) , which quantifies deviations from Kolmogorov probability theory is introduced, and it is shown to be intimately related to the commutator of the projectors P(H1),P(H2) , to the subspaces H 1, H 2. As an application, it is shown that the proof of the inequalities of Clauser, Horne, Shimony, and Holt for a system of two spin 1/2 particles is valid for Kolmogorov probabilities, but it is not valid for Dempster-Shafer probabilities. The violation of these inequalities in experiments supports the interpretation of quantum probabilities as Dempster-Shafer probabilities
Secure Code Update for Embedded Devices via Proofs of Secure Erasure
Abstract. Remote attestation is the process of verifying internal state of a remote embedded device. It is an important component of many security protocols and applications. Although previously proposed re-mote attestation techniques assisted by specialized secure hardware are effective, they not yet viable for low-cost embedded devices. One no-table alternative is software-based attestation, that is both less costly and more efficient. However, recent results identified weaknesses in some proposed software-based methods, thus showing that security of remote software attestation remains a challenge. Inspired by these developments, this paper explores an approach that relies neither on secure hardware nor on tight timing constraints typi-cal of software-based technqiques. By taking advantage of the bounded memory/storage model of low-cost embedded devices and assuming a small amount of read-only memory (ROM), our approach involves a new primitive – Proofs of Secure Erasure (PoSE-s). We also show that, even though it is effective and provably secure, PoSE-based attestation is not cheap. However, it is particularly well-suited and practical for two other related tasks: secure code update and secure memory/storage erasure. We consider several flavors of PoSE-based protocols and demonstrate their feasibility in the context of existing commodity embedded devices.
Lower and upper probabilities in the distributive lattice of subsystems
yesThe set of subsystems ∑ (m) of a finite quantum system ∑(n) (with variables in Ζ(n)) together with logical connectives, is a distributive lattice. With regard to this lattice, the ℓ(m | ρn) = Tr ((m) ρn ) (where (m) is the projector to ∑(m)) obeys a supermodularity inequality, and it is interpreted as a lower probability in the sense of the Dempster–Shafer theory, and not as a Kolmogorov probability. It is shown that the basic concepts of the Dempster–Shafer theory (lower and upper probabilities and the Dempster multivaluedness) are pertinent to the quantum formalism of finite systems
Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study, volume 1
An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability
Kapitel 8. Landnutzung und Klimawandel im Kontext der Nachhaltigen Entwicklungsziele
Dieses Kapitel präsentiert und bewertet den aktuellen Stand des Wissens zum Konnex Landnutzung und Klimawandel in Österreich aus dem systemischen Blickwinkel der UN Agenda 2030 für eine Nachhaltige Entwicklung. Dabei wird dem Thema entsprechend auf die Verflechtungen zwischen den lokalen, nationalen und internationalen Ebenen eingegangen. Die Menschheit befindet sich in kritischen, vielfältigen und vernetzten Krisen. Integrative und globale Lösungsansätze, wie sie in der Agenda 2030 festgeschrieben sind, haben für diese multiplen Krisen ein hohes Lösungspotenzial
- …