1,611 research outputs found
Optical and TEM study of shock metamorphism from the Sedan test site
Thus far, detailed petrologic studies of shock metamorphism have been performed on samples recovered from laboratory experiments and on a few natural impactites. The loading history of these samples is quite different: In particular, laboratory experiments spend only a short time (less than 1 microsec) at peak pressure, whereas natural impactites may have stress pulses from 0.1 - 1 ms. On the other hand, laboratory experiments have known stress histories; natural impactites do not. Natural samples are also subjected to thousands or millions of years of postshock annealing and/or weathering. A useful intermediate case is that of nuclear detonation. Stress pulses for these events can reach 0.1 ms or higher, and samples are obtained in pristine condition. All three types of loading produce stresses of hundreds of kilobars. Samples studied were taken from the Sedan nulcear test site, and consist of a coarse-grained granodiorite containing quartz, K-feldspar, cordierite, and hornblende. Samples were studied optically in this section, then were thinned with an ion mill and studied by transmission electron microscopy (TEM). Optically, quartz and K-feldspar displayed numerous sets of planar deformation features (PDF's) identical to the nondecorated PDF's seen in laboratory samples and many natural impactites. TEM study showed that the PDF's in quartz and feldspar corresponded to densely packed wide transformation lamellae identical to those described in laboratory studies. The transformation lamellae in both minerals were amorphous, with no sign of high-pressure phases. In the case of K-feldspar only, narrow sublamellae extended outward from some wide lamellae. Quartz, which was more abundant and studied more extensively, contained no shock-induced dislocations. Some planar features were also seen in cordierite, but could not be identified due to rapid beam damage. No shock defects were seen in hornblende in TEM. The shock-induced defects present at the Sedan site are very similar to those seen in shock recovery experiments, and also to those present at certain natural events (e.g., Meteor Crater). This suggests that shock deformation in quartz is not strongly dependent on shock pulse duration, and that laboratory recovery experiments are useful simulations of natural impact events
Simulated meteorite impacts and volcanic explosions: Ejecta analyses and planetary implications
Past cratering studies have focused primarily on crater morphology. However, important questions remain about the nature of crater deposits. Phenomena that need to be studied include the distribution of shock effects in crater deposits and crater walls; the origin of mono- and polymict breccia; differences between local and distal ejecta; deformation induced by explosive volcanism; and the production of unshocked, high-speed ejecta that could form the lunar and martian meteorites found on the Earth. To study these phenomena, one must characterize ejecta and crater wall materials from impacts produced under controlled conditions. New efforts at LLNL simulate impacts and volcanism and study resultant deformation. All experiments use the two-stage light-gas gun facility at LLNL to accelerate projectiles to velocities of 0.2 to 4.3 km/s, including shock pressures of 0.9 to 50 GPa. We use granite targets and novel experimental geometries to unravel cratering processes in crystalline rocks. We have thus far conducted three types of simulations: soft recovery of ejecta, 'frozen crater' experiments, and an 'artificial volcano. Our ejecta recovery experiments produced a useful separation of impactites. Material originally below the projectile remained trapped there, embedded in the soft metal of the flyer plate. In contrast, material directly adjacent to the projectile was jetted away from the impact, producing an ejecta cone that was trapped in the foam recovery fixture. We find that a significant component of crater ejecta shows no signs of strong shock; this material comes from the near-surface 'interference zone' surrounding the impact site. This phenomenon explains the existence of unshocked meteorites on the Earth of lunar and martian origin. Impact of a large bolide on neighboring planets will produce high-speed, weakly shocked ejecta, which may be trapped by the Earth's gravitational field. 'Frozen crater' experiments show that the interference zone is highly localized; indeed, disaggregation does not extend beyond approx. 1.5 crater radii. A cone-shaped region extending downward from the impact site is completely disaggregated, including powdered rock that escaped into the projectile tube. Petrographic analysis of crater ejecta and wall material will be presented. Finally, study of ejecta from 0.9- and 1.3-GPa simulations of volcanic explosions reveal a complete lack of shock metamorphism. The ejecta shows no evidence of PDF's, amorphization, high-pressure phases, or mosaicism. Instead, all deformation was brittle, with fractures irregular (not planar) and most intergranular. The extent of fracturing was remarkable, with the entire sample reduced to fragments of gravel size and smaller
Oceanographic influences on the sea ice cover in the Sea of Okhotsk
Sea ice conditions in the Sea of Okhotsk, as determined by satellite images from the electrically scanning microwave radiometer on board Nimbus 5, were analyzed in conjunction with the known oceanography. In particular, the sea ice coverage was compared with the bottom bathymetry and the surface currents, water temperatures, and salinity. It is found that ice forms first in cold, shallow, low salinity waters. Once formed, the ice seems to drift in a direction approximating the Okhotsk-Kuril current system. Two basic patterns of ice edge positioning which persist for significant periods were identified as a rectangular structure and a wedge structure. Each of these is strongly correlated with the bathymetry of the region and with the known current system, suggesting that convective depth and ocean currents play an important role in determining ice patterns
Role of Fe substitution on the anomalous magnetocaloric and magnetoresistance behavior in Tb(Ni1-xFex)2 compounds
We report the magnetic, magnetocaloric and magnetoresistance results obtained
in Tb(Ni1-xFex)2 compounds with x=0, 0.025 and 0.05. Fe substitution leads to
an increase in the ordering temperature from 36 K for x=0 to 124 K for x=0.05.
Contrary to a single sharp MCE peak seen in TbNi2, the MCE peaks of the Fe
substituted compounds are quite broad. We attribute the anomalous MCE behavior
to the randomization of the Tb moments brought about by the Fe substitution.
Magnetic and magnetoresistance results seem to corroborate this proposition.
The present study also shows that the anomalous magnetocaloric and
magnetoresistance behavior seen in the present compounds is similar to that of
Ho(Ni,Fe)2 compounds
Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats
We thank Donna Wallace and the Rowett Animal House staff for the daily care of experimental rats, body weight and food intake measurements and MRI scanning, Vivien Buchan and Donna Henderson of the Rowett Analytical Department for proximate analyses and SCFA GC, and Andrew Chappell for conducting the beta-glucan analysis. This research was funded by the Scottish Government’s Rural and Environment Science and Analytical Services Division.Peer reviewedPublisher PD
FPGA-based Hyrbid Memory Emulation System
Hybrid memory systems, comprised of emerging non-volatile memory (NVM) and
DRAM, have been proposed to address the growing memory demand of applications.
Emerging NVM technologies, such as phase-change memories (PCM), memristor, and
3D XPoint, have higher capacity density, minimal static power consumption and
lower cost per GB. However, NVM has longer access latency and limited write
endurance as opposed to DRAM. The different characteristics of two memory
classes point towards the design of hybrid memory systems containing multiple
classes of main memory.
In the iterative and incremental development of new architectures, the
timeliness of simulation completion is critical to project progression. Hence,
a highly efficient simulation method is needed to evaluate the performance of
different hybrid memory system designs. Design exploration for hybrid memory
systems is challenging, because it requires emulation of the full system stack,
including the OS, memory controller, and interconnect. Moreover, benchmark
applications for memory performance test typically have much larger working
sets, thus taking even longer simulation warm-up period.
In this paper, we propose a FPGA-based hybrid memory system emulation
platform. We target at the mobile computing system, which is sensitive to
energy consumption and is likely to adopt NVM for its power efficiency. Here,
because the focus of our platform is on the design of the hybrid memory system,
we leverage the on-board hard IP ARM processors to both improve simulation
performance while improving accuracy of the results. Thus, users can implement
their data placement/migration policies with the FPGA logic elements and
evaluate new designs quickly and effectively. Results show that our emulation
platform provides a speedup of 9280x in simulation time compared to the
software counterpart Gem5
Recommended from our members
The power of conceptual metaphor in Diana Abu-Jaber's The Language of Baklava and Birds of Paradise
This thesis examines the use of religious metaphor as it applies to food in two literary works by Diana Abu-Jaber. First, The Language of Baklava, a culinary memoir published in 2005, reveals aspects of cultural identity and memory through food and metaphor. Second, Abu-Jabers most recent novel, Birds of Paradise, explores complex family relationships enacted through metaphor. The analyses of textual representations of food rely on a theoretical framework that includes a cultural anthropological perspective, as well as a rhetorical perspective, and uses textual analysis to examine metaphor and food narratives in literature
Diagnosis and Interim Treatment Outcomes from the First Cohort of Multidrug-Resistant Tuberculosis Patients in Tanzania.
Kibong'oto National Tuberculosis Hospital (KNTH), Kilimanjaro, Tanzania. Characterize the diagnostic process and interim treatment outcomes from patients treated for multidrug-resistant tuberculosis (MDR-TB) in Tanzania. A retrospective cohort study was performed among all patients treated at KNTH for pulmonary MDR-TB between November 2009 and September 2011. Sixty-one culture-positive MDR-TB patients initiated therapy, 60 (98%) with a prior history of TB treatment. Forty-one (67%) were male and 9 (14%) were HIV infected with a mean CD4 count of 424 (±106) cells/µl. The median time from specimen collection to MDR-TB diagnosis and from diagnosis to initiation of MDR-TB treatment was 138 days (IQR 101-159) and 131 days (IQR 32-233), respectively. Following treatment initiation four (7%) patients died (all HIV negative), 3 (5%) defaulted, and the remaining 54 (89%) completed the intensive phase. Most adverse drug reactions were mild to moderate and did not require discontinuation of treatment. Median time to culture conversion was 2 months (IQR 1-3) and did not vary by HIV status. In 28 isolates available for additional second-line drug susceptibility testing, fluoroquinolone, aminoglycoside and para-aminosalicylic acid resistance was rare yet ethionamide resistance was present in 9 (32%). The majority of MDR-TB patients from this cohort had survived a prolonged referral process, had multiple episodes of prior TB treatment, but did not have advanced AIDS and converted to culture negative early while completing an intensive inpatient regimen without serious adverse event. Further study is required to determine the clinical impact of second-line drug susceptibility testing and the feasibility of alternatives to prolonged hospitalization
Vacancy motion in rare-earth-deficient R_(1-x)Ni_2 Laves phases observed by perturbed angular correlation spectroscopy
Rare-earth-deficient R_(1-x)Ni_2 Laves phases, which reportedly crystallize in a C15 superstructure with ordered R vacancies, have been investigated by perturbed angular correlation (PAC) measurements of electric quadrupole interactions at the site of the probe nucleus ^111Cd. Although ^111Cd resides on the cubic R site, a strong axially symmetric quadrupole interaction (QI) with frequencies ν(q)approximate to265-275 MHz has been found in the paramagnetic phases of R_(1-x)Ni_2 with R=Pr,Nd,Sm,Gd. This interaction is not observed for the heavy R constituents R=Tb,Dy,Ho,Er. The fraction of probe nuclei subject to the QI in R_(1-x)Ni_2, R=Pr,Nd,Sm,Gd, decreases from 100% at low temperatures to zero at T>300 K and 500 K for R=Sm,Gd and R=Pr,Nd, respectively. At T=100 K the QI is static within the PAC time window, but at T=200 K fluctuations with correlation times τ_(C) 500 K nuclear spin relaxation related to vacancy hopping is observed in nearly all R_(1-x)N_i2. Auxiliary ^111Cd PAC measurements have been carried in Sc_0.95Ni_2, ScNi_2, ScNi_0.97, Gd_2Ni_(17), GdNi_5, GdNi_3, and GdNi
Page size aware cache prefetching
The increase in working set sizes of contemporary applications outpaces the growth in cache sizes, resulting in frequent main memory accesses that deteriorate system per- formance due to the disparity between processor and memory speeds. Prefetching data blocks into the cache hierarchy ahead of demand accesses has proven successful at attenuating this bottleneck. However, spatial cache prefetchers operating in the physical address space leave significant performance on the table by limiting their pattern detection within 4KB physical page boundaries when modern systems use page sizes larger than 4KB to mitigate the address translation overheads. This paper exploits the high usage of large pages in modern systems to increase the effectiveness of spatial cache prefetch- ing. We design and propose the Page-size Propagation Module (PPM), a µarchitectural scheme that propagates the page size information to the lower-level cache prefetchers, enabling safe prefetching beyond 4KB physical page boundaries when the accessed blocks reside in large pages, at the cost of augmenting the first-level caches’ Miss Status Holding Register (MSHR) entries with one additional bit. PPM is compatible with any cache prefetcher without implying design modifications. We capitalize on PPM’s benefits by designing a module that consists of two page size aware prefetchers that inherently use different page sizes to drive prefetching. The composite module uses adaptive logic to dynamically enable the most appropriate page size aware prefetcher. Finally, we show that the proposed designs are transparent to which cache prefetcher is used. We apply the proposed page size exploitation techniques to four state-of-the-art spatial cache prefetchers. Our evalua- tion shows that our proposals improve single-core geomean performance by up to 8.1% (2.1% at minimum) over the original implementation of the considered prefetchers, across 80 memory-intensive workloads. In multi-core contexts, we report geomean speedups up to 7.7% across different cache prefetchers and core configurations.This work is supported by the Spanish Ministry of Science and Technology through the PID2019-107255GB project, the Generalitat de Catalunya (contract 2017-SGR-1414), the European Union Horizon 2020 research and innovation program under grant agreement No 955606 (DEEP-SEA EU project), the National Science Foundation through grants CNS-1938064 and CCF-1912617, and the Semiconductor Research Corporation project GRC 2936.001. Georgios Vavouliotis has been supported by the Spanish Ministry of Economy, Industry, and Competitiveness and the European Social Fund under the FPI fellowship No. PRE2018-087046. Marc Casas has been partially supported by the Grant RYC2017-23269 funded by MCIN/AEI/10.13039/501100011033 and ESF ‘Investing in your future’.Peer ReviewedPostprint (author's final draft
- …