5 research outputs found

    Ohmic heating - a novel approach for gluten-free bread baking

    Get PDF
    Gluten-free (GF) batters usually present several technological challenges that limit the performance during conventional baking and the resulting product quality. Due to the volumetric heating principle and faster heating rates, ohmic heating (OH) may be advantageous compared with conventional baking. Therefore, the potential of using ohmic heating as a novel approach for gluten-free bread baking was explored. In detail, the effect of different OH process parameters (power input, holding time) on the chemical and functional properties (specific volume, crumb firmness and relative elasticity, pore properties, color, starch gelatinization) and digestibility of breads was investigated. Results showed that GF breads could benefit from the uniform rapid heating during processing, as these breads showed superior functional properties (specific volume, 2.86-3.44 cm3/g; relative elasticity, 45.05-56.83%; porosity, 35.17-40.92%) compared with conventional oven-baked GF bread (specific volume, 2.60 cm3/g; relative elasticity, 44.23%; porosity, 37.63%). In order to maximize bread expansion and the OH performance, it was found that the OH process could be improved by applying the electrical energy in three descending power steps: first step with high power input (in this study, 2–6 kW for 15 s), followed by 1 kW for 10 s, and 0.3 kW for 1–30 min. In total, ohmic baking only needed a few minutes to obtain a fully expanded GF bread. The determination of pasting properties and starch digestibility demonstrated that these breads were comparable or even superior to GF breads baked in a conventional baking oven

    Gentle Sterilization of Carrot-Based Purees by High-Pressure Thermal Sterilization and Ohmic Heating and Influence on Food Processing Contaminants and Quality Attributes

    No full text
    Pressure-enhanced sterilization (PES) and ohmic heating (OH) are two emerging sterilization techniques, currently lacking implementation in the food industry. However, both technologies offer significant benefits in terms of spore inactivation using reduced thermal intensity in food products, as well as minimized effects on sensory and nutritional profiles. In this study, PES and OH were tested based on possible food safety process windows in comparison to thermal retorting, to optimize the food quality of carrot-based purees. The following parameters related to food quality were tested: texture, carotenoid content, color, and detectable amount of food processing contaminants (FPC) formed. Application of the innovative sterilization techniques resulted in a better retention of color, texture, and carotenoids (for PES) as well as a reduced formation of food processing contaminants. Importantly, a significant reduction in the formation of furan and its derivates was observed, compared to the retorted samples. Hence, both sterilization technologies showed promising results in the mitigation of potential toxic processing contaminants and retention of quality attributes.TU Berlin, Open-Access-Mittel – 202

    A 32-channel parallel transmit system add-on for 7T MRI.

    No full text
    PurposeA 32-channel parallel transmit (pTx) add-on for 7 Tesla whole-body imaging is presented. First results are shown for phantom and in-vivo imaging.MethodsThe add-on system consists of a large number of hardware components, including modulators, amplifiers, SAR supervision, peripheral devices, a control computer, and an integrated 32-channel transmit/receive body array. B1+ maps in a phantom as well as B1+ maps and structural images in large volunteers are acquired to demonstrate the functionality of the system. EM simulations are used to ensure safe operation.ResultsGood agreement between simulation and experiment is shown. Phantom and in-vivo acquisitions show a field of view of up to 50 cm in z-direction. Selective excitation with 100 kHz sampling rate is possible. The add-on system does not affect the quality of the original single-channel system.ConclusionThe presented 32-channel parallel transmit system shows promising performance for ultra-high field whole-body imaging

    Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments

    No full text
    CRISPR (clustered regularly interspaced short palindromic repeats) genome-editing experiments offer enormous potential for the evaluation of genomic loci using arrayed single guide RNAs (sgRNAs) or pooled sgRNA libraries. Numerous computational tools are available to help design sgRNAs with optimal on-target efficiency and minimal off-target potential. In addition, computational tools have been developed to analyze deep-sequencing data resulting from genome-editing experiments. However, these tools are typically developed in isolation and oftentimes are not readily translatable into laboratory-based experiments. Here, we present a protocol that describes in detail both the computational and benchtop implementation of an arrayed and/or pooled CRISPR genome-editing experiment. This protocol provides instructions for sgRNA design with CRISPOR (computational tool for the design, evaluation, and cloning of sgRNA sequences), experimental implementation, and analysis of the resulting high-throughput sequencing data with CRISPResso (computational tool for analysis of genome-editing outcomes from deep-sequencing data). This protocol allows for design and execution of arrayed and pooled CRISPR experiments in 4-5 weeks by non-experts, as well as computational data analysis that can be performed in 1-2 d by both computational and noncomputational biologists alike using web-based and/or command-line versions
    corecore