179 research outputs found

    The Chemical Compositions of the SRd Variable Stars-- II. WY Andromedae, VW Eridani, and UW Librae

    Full text link
    Chemical compositions are derived from high-resolution spectra for three stars classed as SRd variables in the General Catalogue of Variable Stars. These stars are shown to be metal-poor supergiants: WY And with [Fe/H] = -1.0, VW Eri with [Fe/H] = -1.8, and UW Lib with [Fe/H] = -1.2. Their compositions are identical to within the measurement errors with the compositions of subdwarfs, subgiants, and less evolved giants of the same FeH. The stars are at the tip of the first giant branch or in the early stages of evolution along the asymptotic giant branch (AGB). There is no convincing evidence that these SRd variables are experiencing thermal pulsing and the third dredge-up on the AGB. The SRds appear to be the cool limit of the sequence of RV Tauri variables.Comment: 14 pages, 1 figure, 4 table

    Heavy element abundances in giant stars of the globular clusters M4 and M5

    Full text link
    We present a comprehensive abundance analysis of 27 heavy elements in bright giant stars of the globular clusters M4 and M5 based on high resolution, high signal-to-noise ratio spectra obtained with the Magellan Clay Telescope. We confirm and expand upon previous results for these clusters by showing that (1) all elements heavier than, and including, Si have constant abundances within each cluster, (2) the elements from Ca to Ni have indistinguishable compositions in M4 and M5, (3) Si, Cu, Zn, and all s-process elements are approximately 0.3 dex overabundant in M4 relative to M5, and (4) the r-process elements Sm, Eu, Gd, and Th are slightly overabundant in M5 relative to M4. The cluster-to-cluster abundance differences for Cu and Zn are intriguing, especially in light of their uncertain nucleosynthetic origins. We confirm that stars other than Type Ia supernovae must produce significant amounts of Cu and Zn at or below the clusters' metallicities. If intermediate-mass AGB stars or massive stars are responsible for the Cu and Zn enhancements in M4, the similar [Rb/Zr] ratios and (preliminary) Mg isotope ratios in both clusters may be problematic for either scenario. For the elements from Ba to Hf, we assume that the s- and r-process contributions are scaled versions of the solar s- and r-process abundances. We quantify the relative fractions of s- and r-process material for each cluster and show that they provide an excellent fit to the observed abundances.Comment: Accepted for publication in Ap

    Comparison of “Look-Alike” Implant Prosthetic Retaining Screws

    Full text link
    : The maximum preload torque of implant prosthetic retaining screws from four manufacturers and of two alloy types was measured to determine one index of interchangeability of intersystem components. Materials and Methods : Implant prosthetic retaining screws from four manufacturers (3i Implant Innovations Inc, West Palm Beach, FL; Impla-Med Inc, Sunrise, FL; Nobelpharma USA Inc, Chicago, IL; and Implant Support Systems Inc, Irvine, CA) and of two metal types (gold and titanium) were investigated using an in vitro simulation model. Five screws of each type were tightened down against a gold cylinder using a Tohnichi BTG-6 torque gauge (Tohnichi American Corporation, Northbrook, IL) until fracture occurred. Results : The 3i Implant Innovations gold and the Nobelpharma gold were not significantly different. The 3i Implant Innovations titanium and the Impla-Med gold were able to withstand less preload torque than the 3i Implant Innovations gold and the Nobelpharma gold. The Implant Support Systems titanium was able to withstand significantly more preload torque than all of the other screws. Conclusions : Interchanging implant prosthetic retaining screws could introduce new and unknown variables that may affect the long-term survival of implant fixtures and/or the implant prostheses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74593/1/j.1532-849X.1995.tb00310.x.pd

    Rubidium and lead abundances in giant stars of the globular clusters M 13 and NGC 6752

    Full text link
    We present measurements of the neutron-capture elements Rb and Pb in five giant stars of the globular cluster NGC 6752 and Pb measurements in four giants of the globular cluster M 13. The abundances were derived by comparing synthetic spectra with high resolution, high signal-to-noise ratio spectra obtained using HDS on the Subaru telescope and MIKE on the Magellan telescope. The program stars span the range of the O-Al abundance variation. In NGC 6752, the mean abundances are [Rb/Fe] = -0.17 +/- 0.06 (sigma = 0.14), [Rb/Zr] = -0.12 +/- 0.06 (sigma = 0.13), and [Pb/Fe] = -0.17 +/- 0.04 (sigma = 0.08). In M 13 the mean abundance is [Pb/Fe] = -0.28 +/- 0.03 (sigma = 0.06). Within the measurement uncertainties, we find no evidence for a star-to-star variation for either Rb or Pb within these clusters. None of the abundance ratios [Rb/Fe], [Rb/Zr], or [Pb/Fe] are correlated with the Al abundance. NGC 6752 may have slightly lower abundances of [Rb/Fe] and [Rb/Zr] compared to the small sample of field stars at the same metallicity. For M 13 and NGC 6752 the Pb abundances are in accord with predictions from a Galactic chemical evolution model. If metal-poor intermediate-mass asymptotic giant branch stars did produce the globular cluster abundance anomalies, then such stars do not synthesize significant quantities of Rb or Pb. Alternatively, if such stars do synthesize large amounts of Rb or Pb, then they are not responsible for the abundance anomalies seen in globular clusters.Comment: Accepted for publication in Ap

    The Chemical Compositions of the SRd Variable Stars. III. KK Aquilae, AG Aurigae, Z Aurigae, W Leo Minoris, and WW Tauri

    Get PDF
    Chemical compositions are derived from high-resolution spectra for five field SRd variables. These supergiants not previously analysed are shown to be metal-poor: KK Aql with [Fe/H] = -1.2, AG Aur with [Fe/H] = -1.8, Z Aur with [Fe/H] = -1.4, W LMi with [Fe/H] = -1.1, and WW Tau with [Fe/H] = -1.1. Their compositions are, except for two anomalies, identical to within the measurement errors with the compositions of subdwarfs, subgiants, and less evolved giants of the same [Fe/H]. One anomaly is an s-process enrichment for KK Aql, the first such enrichment reported for a SRd variable. The second and more remarkable anomaly is a strong lithium enrichment for W LMi, also a first for field SRds. The Li I 6707 A profile is not simply that of a photospheric line but includes strong absorption from red-shifted gas, suggesting, perhaps, that lithium enrichment results from accretion of Li-rich gas. This potential clue to lithium enrichment is discussed in light of various proposals for lithium synthesis in evolved stars.Comment: 18 pages of text, 8 tables, 2 figures. Accepted for publication in PAS

    The Interstellar Rubidium Isotope Ratio toward Rho Ophiuchi A

    Full text link
    The isotope ratio, 85Rb/87Rb, places constraints on models of the nucleosynthesis of heavy elements, but there is no precise determination of the ratio for material beyond the Solar System. We report the first measurement of the interstellar Rb isotope ratio. Our measurement of the Rb I line at 7800 A for the diffuse gas toward rho Oph A yields a value of 1.21 +/- 0.30 (1-sigma) that differs significantly from the meteoritic value of 2.59. The Rb/K elemental abundance ratio for the cloud also is lower than that seen in meteorites. Comparison of the 85Rb/K and 87Rb/K ratios with meteoritic values indicates that the interstellar 85Rb abundance in this direction is lower than the Solar System abundance. We attribute the lower abundance to a reduced contribution from the r-process. Interstellar abundances for Kr, Cd, and Sn are consistent with much less r-process synthesis for the solar neighborhood compared to the amount inferred for the Solar System.Comment: 12 pages with 2 figures and 1 table; will appear in ApJ Letter

    Carbon and Strontium Abundances of Metal-Poor Stars

    Full text link
    We present carbon and strontium abundances for 100 metal-poor stars measured from R∌\sim 7000 spectra obtained with the Echellette Spectrograph and Imager at the Keck Observatory. Using spectral synthesis of the G-band region, we have derived carbon abundances for stars ranging from [Fe/H]=−1.3=-1.3 to [Fe/H]=−3.8=-3.8. The formal errors are ∌0.2\sim 0.2 dex in [C/Fe]. The strontium abundance in these stars was measured using spectral synthesis of the resonance line at 4215 {\AA}. Using these two abundance measurments along with the barium abundances from our previous study of these stars, we show it is possible to identify neutron-capture-rich stars with our spectra. We find, as in other studies, a large scatter in [C/Fe] below [Fe/H]=−2 = -2. Of the stars with [Fe/H]<−2<-2, 9±\pm4% can be classified as carbon-rich metal-poor stars. The Sr and Ba abundances show that three of the carbon-rich stars are neutron-capture-rich, while two have normal Ba and Sr. This fraction of carbon enhanced stars is consistent with other studies that include this metallicity range.Comment: ApJ, Accepte

    Rubidium and lead abundances in giant stars of the globular clusters M4 and M5

    Get PDF
    We present measurements of the neutron-capture elements Rb and Pb for bright giants in the globular clusters M4 and M5. The clusters are of similar metallicity ([Fe/H] = -1.2) but M4 is decidedly s-process enriched relative to M5: [Ba/Fe] = +0.6 for M4 but 0.0 for M5. The Rb and Pb abundances were derived by comparing synthetic spectra with high-resolution, high signal-to-noise ratio spectra obtained with MIKE on the Magellan telescope. Abundances of Y, Zr, La, and Eu were also obtained. In M4, the mean abundances from 12 giants are [Rb/Fe] = 0.39 +/- 0.02 (sigma = 0.07), [Rb/Zr] = 0.17 +/- 0.03 (sigma = 0.08), and [Pb/Fe] = 0.30 +/- 0.02 (sigma = 0.07). In M5, the mean abundances from two giants are [Rb/Fe] = 0.00 +/- 0.05 (sigma = 0.06), [Rb/Zr] = 0.08 +/- 0.08 (sigma = 0.11), and [Pb/Fe] = -0.35 +/- 0.02 (sigma = 0.04). Within the measurement uncertainties, the abundance ratios [Rb/Fe], [Pb/Fe] and [Rb/X] for X = Y, Zr, La are constant from star-to-star in each cluster and none of these ratios are correlated with O or Na abundances. While M4 has a higher Rb abundance than M5, the ratios [Rb/X] are similar in both clusters indicating that the nature of the s-products are very similar for each cluster but the gas from which M4's stars formed had a higher concentration of these products.Comment: Accepted for publication in Ap

    BIGRE: a low cross-talk integral field unit tailored for extrasolar planets imaging spectroscopy

    Full text link
    Integral field spectroscopy (IFS) represents a powerful technique for the detection and characterization of extrasolar planets through high contrast imaging, since it allows to obtain simultaneously a large number of monochromatic images. These can be used to calibrate and then to reduce the impact of speckles, once their chromatic dependence is taken into account. The main concern in designing integral field spectrographs for high contrast imaging is the impact of the diffraction effects and the non-common path aberrations together with an efficient use of the detector pixels. We focus our attention on integral field spectrographs based on lenslet-arrays, discussing the main features of these designs: the conditions of appropriate spatial and spectral sampling of the resulting spectrograph's slit functions and their related cross-talk terms when the system works at the diffraction limit. We present a new scheme for the integral field unit (IFU) based on a dual-lenslet device (BIGRE), that solves some of the problems related to the classical TIGER design when used for such applications. We show that BIGRE provides much lower cross-talk signals than TIGER, allowing a more efficient use of the detector pixels and a considerable saving of the overall cost of a lenslet-based integral field spectrograph.Comment: 17 pages, 18 figures, accepted for publication in Ap

    QSO Absorbing Galaxies at z<~1: Deep Imaging and Spectroscopy in the Field of 3C 336

    Get PDF
    We present very deep WFPC2 images and FOS spectroscopy from the Hubble Space Telescope (HST) together with numerous supporting ground-based observations of the field of the quasar 3C 336 (zem=0.927z_{em}=0.927). The observations are designed to investigate the nature of galaxies producing metal line absorption systems in the spectrum of the QSO. Along a single line of sight, we find at least 6 metal line absorption systems (of which 3 are newly discovered) ranging in redshift from 0.317 to 0.892. Through an extensive program of optical and IR imaging, QSO spectroscopy, and faint galaxy spectroscopy, we have identified 5 of the 6 metal line absorption systems with luminous (L_K > 0.1 L*_K) galaxies. These have morphologies ranging from very late-type spiral to S0, and exhibit a wide range of inclination and position angles with respect to the QSO sightline. The only unidentified absorber, despite our intensive search, is a damped Lyman α\alpha system at zabs=0.656z_{abs}=0.656. Analysis of the absorption spectrum suggests that the metal abundances ([Fe/H]=−1.2=-1.2) in this system are similar to those in damped systems at z∌2z \sim 2, and to the two other damped systems for which abundances have been determined at z<1z <1. We have found no examples of intrinsically faint galaxies (L<0.1L∗L < 0.1 L^{\ast}) at small impact parameters that might have been missed as absorber candidates in our previous ground-based imaging and spectroscopic programs on MgII absorbing galaxies. There are no bright galaxies (L > 0.1 L_K) within 50h^{-1} kpc which do not produce detectable metal lines (of Mg II 2796, 2803 and/or C IV 1548, 1550) in the QSO spectrum. All of these results generally support the inferences which we have previously reached from a larger survey for absorption-selected galaxies at z\simlt 1.Comment: 32 pages latex (AAS v4.0 style). 8 Postscript figures (including HST plate) available at ftp://astro.caltech.edu/users/ccs/3c336_figs.ps.gz . Submitted to Ap
    • 

    corecore