125 research outputs found

    On a damage-plasticity approach to model concrete failure

    Full text link
    A damage-plasticity constitutive model for the description of fracture in plain concrete is presented. Two approaches, the local model comprising the adjustment of the softening modulus and the nonlocal model based on spatial averaging of history variables, are applied to the analysis of a concrete bar subjected to uniaxial tension and to a three-point bending test. The influence of mesh size and the decomposition into damage and plasticity components are discussed. It is shown that for the two examples studied, both approaches result in mesh-independent results. However, the nonlocal model, which relies on spatial averaging of history variables, exhibits sensitivity with respect to boundary conditions, which requires further studies.Comment: Revised version. Resubmitted to Engineering and Computational Mechanic

    Three-Dimensional Network Model for Coupling~of~Fracture and Mass Transport in Quasi-Brittle Geomaterials

    Get PDF
    Dual three-dimensional networks of structural and transport elements were combined to model the effect of fracture on mass transport in quasi-brittle geomaterials. Element connectivity of the structural network, representing elasticity and fracture, was defined by the Delaunay tessellation of a random set of points. The connectivity of transport elements within the transport network was defined by the Voronoi tessellation of the same set of points. A new discretisation strategy for domain boundaries was developed to apply boundary conditions for the coupled analyses. The properties of transport elements were chosen to evolve with the crack opening values of neighbouring structural elements. Through benchmark comparisons involving non-stationary transport and fracture, the proposed dual network approach was shown to be objective with respect to element size and orientation

    On a three-dimensional lattice approach for modelling corrosion induced cracking and its influence on bond between reinforcement and concrete

    Full text link
    The present work involves the discrete modelling of corrosion induced cracking and its influence on the bond between reinforcement and concrete. A lattice approach is used to describe the mechanical interaction of a corroding reinforcement bar, the surrounding concrete and the interface between steel reinforcement and concrete. The cross-section of the ribbed reinforcement bar is taken to be circular, assuming that the interaction of the ribs of the deformed reinforcement bar and the surrounding concrete is included in a cap-plasticity interface model. The expansion of the corrosion product is represented by an eigenstrain in the lattice elements forming the interface. The lattice modelling approach is applied to the analysis of corrosion induced cracking and its influence of the bond strength. The model capabilities are assessed by comparing results of analyses with those from unconfined pull-out tests reported in the literature. Future work will investigate the influence of the stiffness of interface elements and the effect of lateral confinement on corrosion induced cracking.Comment: Preprint of conference paper for Fracture Mechanics of Concrete and Concrete Structures, South Korea, 201

    Analysis of size effect on strength of quasi-brittle materials using integral-type nonlocal models

    Get PDF
    The influence of the averaging operator of nonlocal continuum damage models near specimen boundaries on the size effect on strength of quasibrittle materials is investigated. Two phenomenological approaches, namely standard rescaling and distance-based models, are considered. The numerical results are compared to data from three-point bending tests of notched and unnotched beams recently reported in the literature. It is shown that both approaches can reproduce the experiments well for one type of geometry with one set of input parameters. However, only the distance-based model provides a good agreement for both unnotched and notched beams with the same set of parameters

    On the numerical modelling of bond for the failure analysis of reinforced concrete

    Get PDF
    The structural performance of reinforced concrete relies heavily on the bond between reinforcement and concrete. In nonlinear finite element analyses, bond is either modelled by merged, also called perfect bond, or coincident with slip, also called bond-slip, approaches. Here, the performance of these two approaches for the modelling of failure of reinforced concrete was investigated using a damage-plasticity constitutive model in LS-DYNA. Firstly, the influence of element size on the response of tension-stiffening analyses with the two modelling approaches was investigated. Then, the results of the two approaches were compared for plain and fibre reinforced tension stiffening and a drop weight impact test. It was shown that only the coincident with slip approach provided mesh insensitive results. However, both approaches were capable of reproducing the overall response of the experiments in the form of load and displacements satisfactorily for the meshes used

    Network modelling of the influence of swelling on the transport behaviour of bentonite

    Get PDF
    Wetting of bentonite is a complex hydro-mechanical process that involves swelling and, if confined, significant structural changes in its void structure. A coupled structural transport network model is proposed to investigate the effect of wetting of bentonite on retention conductivity and swelling pressure response. The transport network of spheres and pipes, representing voids and throats, respectively, relies on Laplace–Young’s equation to model the wetting process. The structural network uses a simple elasto-plastic approach without hardening to model the rearrangement of the fabric. Swelling is introduced in the form of an eigenstrain in the structural elements, which are adjacent to water filled spheres. For a constrained cell, swelling is shown to produce plastic strains, which result in a reduction of pipe and sphere spaces and, therefore, influence the conductivity and retention behaviour

    Network Modelling of Fluid Retention Behaviour in Unsaturated Soils

    Get PDF
    The paper describes discrete modelling of the retention behaviour of unsaturated porous materials. A network approach is used within a statistical volume element (SVE), suitable for subsequent use in hydro-mechanical analysis and incorporation within multi-scale numerical modelling. The soil pore structure is modelled by a network of cylindrical pipes connecting spheres, with the spheres representing soil voids and the pipes representing inter-connecting throats. The locations of pipes and spheres are determined by a Voronoi tessellation of the domain. Original aspects of the modelling include a form of periodic boundary condition implementation applied for the first time to this type of network, a new pore volume scaling technique to provide more realistic modelling and a new procedure for initiating drying or wetting paths in a network model employing periodic boundary conditions. Model simulations, employing two linear cumulative probability distributions to represent the distributions of sphere and pipe radii, are presented for the retention behaviour reported from a mercury porosimetry test on a sandstone

    Hydro-mechanical network modelling of particulate composites

    Get PDF
    Differential shrinkage in particulate quasi-brittle materials causes microcracking which reduces durability in these materials by increasing their mass transport properties. A hydro-mechanical three-dimensional periodic network approach was used to investigate the influence of particle and specimen size on the specimen permeability. The particulate quasi-brittle materials studied here consist of stiff elastic particles, and a softer matrix and interfacial transition zones between matrix and particles exhibiting nonlinear material responses. An incrementally applied uniform eigenstrain, along with a damage-plasticity constitutive model, are used to describe the shrinkage and cracking processes of the matrix and interfacial transition zones. The results showed that increasing particle diameter at constant volume fraction increases the crack widths and, therefore, permeability, which confirms previously obtained 2D modelling results. Furthermore, it was demonstrated that specimen thickness has, in comparison to the influence of particle size, a small influence on permeability increase due to microcracking
    • …
    corecore