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∗ Corresponding author. Email: peter.grassl@glasgow.ac.uk

Keywords: bond; concrete; reinforcement; damage-plasticity; failure

Abstract

The structural performance of reinforced concrete relies heavily on the bond between reinforcement and concrete. In

nonlinear finite element analyses, bond is either modelled by merged, also called perfect bond, or coincident with

slip, also called bond-slip, approaches. Here, the performance of these two approaches for the modelling of failure of

reinforced concrete was investigated using a damage-plasticity constitutive model in LS-DYNA. Firstly, the influence of

element size on the response of tension-stiffening analyses with the two modelling approaches was investigated. Then,

the results of the two approaches were compared for plain and fibre reinforced tension stiffening and a drop weight

impact test. It was shown that only the coincident with slip approach provided mesh insensitive results. However, both

approaches were capable of reproducing the overall response of the experiments in the form of load and displacements

satisfactorily for the meshes used.
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Table 1: Nomenclature.

Symbol Definition

Ac cross-sectional area of concrete specimen

As cross-sectional area of the reinforcement bar

E Young’s modulus

Ec Young’s modulus of concrete

Ek,0 kinetic energy before impact

Ep plastic hardening modulus

Es Young’s modulus of steel

F force

Fy yield force

fc compressive strength

fck characteristic compressive strength

ft tensile strength

ft1 stress threshold

GF tensile fracture energy of concrete

Hp hardening modulus

he measure of element length

hm average length of the two adjacent beam elements

L Length

MRd Moment capacity

mb effective mass of the beam

mbeam mass of the beam

mw mass of the drop weight

Ns axial force

qh hardening parameter

R, Rrd load capacity

We external energy

Wi internal energy

Wi,el elastic internal energy

Wi,pl plastic internal energy

s slip

smax slip at which bond strength is reached

Ve volume of element

wc crack opening

wf crack opening threshold

wf1 crack opening threshold
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Table 1: Cont.

Symbol Definition

α ratio of stiffnesses

δ displacement

εc inelastic strain

εf inelastic strain threshold in compression

θ̄ Lode angle

κmF dynamic correction coefficient

ν Poisson’s ratio

ρ̄ length of deviatoric effective stress

ρ density

ρs ratio of areas

σ stress

σ̄v volumetric effective stress

σy yield strength

τb bond stress

τmax bond strength

φ diameter of the reinforcement bar
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1 Introduction

Ductile, durable and cost effective reinforced concrete structures can be produced by designing the reinforcement

arrangement and bond properties between reinforcement and matrix. The nonlinear finite element method has the

potential to support the design process of reinforced concrete structures, because it is capable of producing detailed

results which are difficult to extract from physical experiments. By analysing the nonlinear response of individual

components, namely plain concrete, reinforcing steel and the interaction of reinforcement and concrete, detailed

information about the composite response can be obtained. This requires modelling techniques, which provide a

realistic description of the mechanical response of individual components. For a successful application of the nonlinear

finite element method, the models need to be robust, based on input parameters which can be easily obtained and

produce results independent of numerical approximation procedures, i.e. independent of mesh and step size.

For the nonlinear finite element method, one common check is to show that the results are mesh-insensitive. For

plain concrete, this is a challenging task since the response in tension and low confined compression is quasi-brittle

which is characterised by strain softening, i.e. decreasing stress with increasing strain. This strain softening results in

localised deformation patterns in the form of cracks and shear bands. Common strategies to describe these localised

deformation patterns mesh independently is to use nonlocal constitutive models [1] or to adjust the softening modulus

of local constitutive models with respect to a length measure which is directly proportional to the element size.

Nonlocal constitutive models are most commonly formulated as integral type nonlocal or gradient models in which

the stress evaluation depends on spatial averaging of history variables [38] or spatial gradients of history variables

[35], respectively. These models have shown to provide results for localised deformation patterns which are insensitive

to mesh size and mesh orientation, if the mesh is chosen to be fine enough [46]. Nonlocal models are rarely used

in commercial finite element programs, because they are difficult to calibrate and require very fine discretisations.

Recently, a new calibration strategy for nonlocal models was proposed in [47], but more work is required to address

the requirement for fine discretisation. On the other hand, crack band models based on an adjustment of the softening

modulus [37, 2] are commonly used in commercial finite element programs. These models can be used with a wide

range of mesh sizes and can be relatively easily calibrated. For crack band models, global results in the form of

load-displacement curves are in many cases insensitive to the mesh size. However, deformation patterns are often

influenced by the mesh direction, since they localise in a mesh-size dependent zone [23]. Furthermore, in general 3D

analyses, there is no straightforward approach how to define the length measure which is used to adjust the softening

modulus of stress-strain curves [21].

In structural analyses of reinforced concrete, reinforcement is often modelled by beam or truss elements which are

connected to solid elements. The constitutive model for the reinforcement is typically based on elasto-plasticity, where

the plasticity part is either hardening or perfect plastic. Therefore, for the reinforcement itself, mesh-independent

modelling is not difficult. For the interaction of reinforcement and concrete, either perfect bond or bond-slip laws are
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used [20]. For perfect bond, the nodes of the reinforcement are merged with those of the concrete elements, if the

mesh is generated so that the location of nodes of reinforcement and concrete elements coincide. Alternatively, the

degrees of freedom of the reinforcement are constrained within the concrete elements [36, 12, 20, 6]. Perfect bond is

often assumed in the failure analysis of structures with good bond conditions between reinforcement and concrete,

such as for the case of deformed reinforcement bars, which contain ribs to increase the load transfer between steel

and concrete [7]. For poor bond conditions or more complicated loading scenarios such as cyclic loading, bond-slip

laws are used, which can be included by means of nonlinear springs [32, 31, 44] or interface elements [40, 45] between

coincident nodes of reinforcement and concrete elements. Alternatively, techniques to include bond-slip laws while

constraining the reinforcement element within the concrete elements has been reported in [20, 43]. An investigation of

constrained approaches together with damage-plasticity models has been presented in [27]. If reinforcement elements

are constrained in the concrete elements, the concrete can be meshed independently from the reinforcement, which

simplifies the mesh generation for complex reinforcement arrangements and hexahedral elements. Therefore, the

constrained techniques are commonly used in commercial finite element programs [10, 11, 16, 20, 42, 43]. However,

the numerical implementation of these constrained approaches for general conditions can be difficult.

Studies on the influence of mesh size on the response of reinforced concrete are much less frequent than for plain

concrete structures. From the limited available results in the literature, it was shown that nonlocal models are able

to reproduce the interaction of concrete and reinforcement mesh-independently for both perfect bond [45, 34, 46] and

bond slip [45]. For crack band models, the influence of mesh dependence on crack patterns is less clear. It is generally

accepted that the use of perfect bond together with crack band models produces mesh dependent crack patterns

[45, 46]. In [45], it was also shown that crack patterns obtained from dynamic 2D analyses with bond-slip appear to

be mesh-dependent as well.

In the present study, the modelling of reinforced concrete with perfect bond and bond-slip was further investigated by

means of 3D finite element analyses using merged and coincident with slip approaches. The reinforcement was modelled

by means of beam elements. The merged approach was implemented using the same nodes for the reinforcement

beams and concrete. The coincident with slip approach was introduced by means of springs between coincident nodes

of reinforcement and concrete as proposed in [32, 31, 44]. It was aimed to show how mesh size influences the results

of 3D analysis of an elementary benchmark reproducing the tension stiffening effect of reinforced concrete. The 3D

mesh size study is one of the new aspects of this study. Furthermore, it was investigated which effect the assumption

of perfect bond and bond-slip has on the structural performance of reinforced concrete structures by analysing tension

stiffening experiments reported in [5] and dynamic drop weight impact tests reported in [28, 26].

For concrete, the damage-plasticity constitutive model CDPM2 was used [15, 14]. In this model, plasticity is formulated

in the effective stress space and damage is driven by both elastic and plastic strains. This type of combination of damage

and plasticity was originally proposed by [25] and has since then been used in many constitutive models for concrete

[19, 14, 9, 15]. The damage-plasticity model CDPM2 has shown to be able to reproduce important characteristics
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of concrete, such as strain softening and reduction of stiffness in tension and low-confined compression, as well as

increase of strength and deformation capacity in confined compression. CDPM2 has been recently implemented as

material model 273 in the general purpose finite element program LS-DYNA (Release 9.1.0) [17], which was used for

the present analyses.

2 Method

The influence of the way how bond is modelled on the results of three-dimensional finite element analyses of the failure

of reinforced concrete structures was studied by combining models for concrete, reinforcement and the interaction of

reinforcement and concrete. In the following paragraphs, the models of the different components are discussed.

For concrete, the concrete damage-plasticity model 2 (CDPM2) proposed in [15] was used, which is an extension of

CDPM proposed in [14]. For the details of the model, it is referred to [14, 15]. In CDPM2, the stress evaluation

is based on the damage mechanics concept of nominal and effective stresses. The nominal stress is evaluated by a

combination of damage and plasticity. The effective stress in the undamaged material is determined from the plasticity

part alone. For the nominal stress evaluation, tensile and compressive damage variables are applied to positive and

negative components of the principal effective stress, respectively. The plasticity part of the model is formulated in the

effective stress space by means of the Haigh-Westergaard stress coordinates, which are the volumetric effective stress

σ̄v, the length of the deviatoric effective stress ρ̄ and the Lode angle θ̄ [22] A list of the symbols used in this work is

shown in Table 1. The yield surface is based on an extension of the failure envelope in [29]. This failure envelope is

characterised by curved meridians and deviatoric sections varying from almost triangular in tension to almost circular

in highly confined compression (Figure 1).

During hardening in the pre-peak regime, the yield surface is capped both in hydrostatic tension and compression.

At peak, the failure surface proposed in [29] is reached, which is open in hydrostatic compression. In the post-peak

regime, the yield surface undergoes further hardening, controlled by the hardening modulus Hp, which is designed to

be greater than zero. The greater the value of Hp, the smaller is the contribution of plasticity in the post-peak regime.

Even for Hp almost equal to zero, the softening response will still be a combination of damage and plasticity, since

the plasticity part will produce an almost perfect plastic response, but not softening. The terms pre- and post-peak

refer to the response in the nominal stress space for the case that no strain rate effects are considered. For this case,

the pre-peak regime is modelled by the plasticity approach only.

The post-peak response is the result of a combination of plasticity and damage. Evolution laws for tensile and

compressive damage variables are formulated as functions of the positive and negative parts of the principal effective

stress. The resulting damage formulation is orthotropic. With these two damage variables, the tensile and compressive

softening response can be described independently of each other.
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Figure 1: Evolution of the yield surface for varying hardening parameters qh (from 0.3 to 2) which is smaller than
1 in the pre-peak and larger than 1 in the post-peak regime: (a) Deviatoric section for a constant volumetric stress
of σ̄v = −fc/3 (b) meridians at θ = π/3 (compression) and θ = 0 (tension). The failure surface at which qh = 1 is
indicated by a thicker line.

For tensile loading, deformation patterns are commonly mesh-dependent if local softening stress-strain laws are used,

which are independent of the mesh size. Therefore, the tensile damage variable is linked to a bilinear stress-crack

opening (σ-wc) curve shown in Figure 2a. The tensile fracture energy of concrete GF is defined as the area under the

stress-crack opening curve. For the present bilinear curve, this results in GF = (ftwf1 + ft1wf)/2. For the default

in CDPM2, ft1 = 0.3ft and wf1 = 0.15wf , so that GF = 0.225ftwf . Thus, the crack opening threshold is related to

the area under the stress crack opening curve (fracture energy) as wf = 4.444GF/ft. This value cannot be directly

used as input for the finite analysis with LS-DYNA, since for the crack band approach in LS-DYNA, the inelastic

strain is determined as εc = wc/he, where he is a measure of the element length determined as a function of the

volume of the element as he = 3
√
Ve. For direct tension tests using tetrahedral elements, this approach of estimating

the element length results in an overestimation of the fracture energy obtained in simulations [21]. In [13], it was

shown that for tetrahedral meshes used in a three-point bending analysis, this overestimation can be corrected by

multiplying the value of wf by a factor of 0.56. Thus, in this study, the expression for determining the crack threshold

was wf = 0.56× 4.444GF.

The compressive damage variable is linked to a stress-inelastic strain curve (Figure 2b), since the deformation patterns

in the compressive zones of bending dominated applications are often mesh-size independent [15].

CDPM2 requires many input parameters, which can be divided into groups related to the elastic, plastic and damage

parts of the model. In the present work, most of these parameters are set to their default values provided in [15],

where it was shown that they provide a good match with experimental results. Some of the parameters which are

directly linked to experimental results, such as density ρ, Young’s modulus E, Poisson’s ratio ν, tensile strength ft,

compressive strength fc, fracture energy GF, and damage threshold wf were adjusted to match material data available
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(a) (b)

Figure 2: Softening responses used to determine damage variables: (a) Bilinear stress-crack opening curve used
to determine tensile damage variable, (b) Exponential stress-inelastic strain curve used for the evaluation of the
compressive damage variable.

for the different groups of analyses. Furthermore, the default value for the inelastic strain threshold εf (Figure 2) results

in a very brittle response in compression. Therefore, it is sometimes required to choose a more ductile compressive

response to avoid premature failure in regions close to supports or applied loads by choosing a greater value for εf

than the default. This was done in the present study for the drop weight impact test in section 4.2.

The response of the steel reinforcement was modelled by beam elements with an elasto-plastic constitutive law with

linear hardening. The input parameters of the constitutive law are density ρ, Young’s modulus E, yield strength σy

and plastic hardening modulus Ep.

The interaction between reinforcement and concrete was modelled by two approaches, called merged and coincident

with slip. For the merged approach, the nodes of the beam and solid elements are the same. Commonly, this approach

is called perfect bond, since slip between concrete and reinforcement is prevented. However, the term perfect bond is

slightly misleading, since, if fine meshes are used, slip also occurs due to shear deformations in solid elements adjacent

to the beam elements. For all analyses in this study, irregular tetrahedral meshes were used, which were generated

with the mesh generator T3D [41]. For these type of elements, the merged approach allows for the generation of

irregular meshes with the additional constraint that nodes of beam and solid elements are the same.

For the coincident with slip approach the geometry of the mesh was generated in the same way as for the merged

approach. However, the nodes which connect beam and solid elements are duplicated, so that for these connecting

locations, sets of coincident nodes are obtained. The interaction of the beam and solid elements is then modelled

by three orthogonally orientated springs which are inserted between the coincident nodes [31]. One spring is aligned

with the average axial direction of the two adjacent beam elements. This spring represents the bond-slip law between

reinforcement and concrete. For the other two springs in lateral directions to the average beam axis, elastic spring

stiffnesses are used, which are chosen to be large enough to avoid excessive relative movement, but small enough to

avoid numerical complications. For the axial spring, the nonlinear relation of force F and displacement s is chosen as
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Figure 3: Mesh sensitivity study: Geometry and loading setup.

F = τb(s)πφhm (1)

Here, the displacement s is the slip, i.e. relative displacement, between the reinforcement and the concrete, φ is the

diameter of the reinforcement and hm is the average length of the two adjacent beam elements. In the analyses in

this work, the beams representing reinforcement were straight and meshed regularly. Consequently, the length hm was

equal to the length of the beam elements.

The function τb(s) describes the bond-slip law, which in the present study is chosen as

τb =

 τmax

(
s

smax

)0.4

if s < smax

τmax if s ≥ smax

(2)

where τmax is the bond strength and smax is the slip at which the bond strength is reached. The first part of (2) for

s < smax is identical to the CEB-FIP Model Code [8] for ribbed bars with good bond conditions. The second part was

chosen here to be constant, as done previously in [40, 45], whereas in the CEB-FIP Model Code a softening relation is

used. For the present analyses in which the reinforcement yields before the anchorage capacity has been reached, the

slip encountered was less than smax. Therefore, the second part of the bond law in (2) is considered of no importance

for the present study. According to the CEB-FIP Model Code [8], the bond strength was τmax = 2
√
fck. Here, the

characteristic compressive strength fck was obtained by subtracting 8 MPa from the mean compressive strength [8].

3 Mesh sensitivity study

In the first study, it was investigated if the two approaches for modelling the interaction of reinforcement and concrete

produce mesh insensitive results in combination with a crack-band approach for concrete. The geometry and loading

setup of the numerical test is shown in Figure 3. It consists of a concrete prism of length L = 0.8 m with a cross-

section of 0.1 × 0.1 m2 containing a single reinforcement bar of a diameter of 16 mm. The load was applied in the

form of a monotonically increasing displacement δ at the right end of the reinforcement bar. The other end of the

reinforcement bar was fixed. The concrete was not supported. Explicit dynamic analyses using the Finite Element
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Figure 4: Mesh sensitivity study: Influence of three meshes sizes for the merged approach on (a) normalised load
versus strain and (b) normalised axial force of the steel bar along the specimen length for three load levels marked in
part (a) of the figure.

Program LS-DYNA (Release 9.1.0) [17] with a constant prescribed end displacement rate of 3 mm/s were used to

simulate quasi-static loading. The total duration of the loading was 1 s. It was checked that decreasing the loading

rate further changed the results only insignificantly.

The input parameters were chosen to be typical for reinforced concrete but were not based on any experimental results,

since this part of the study was limited to a mesh sensitivity study. For concrete, the input parameters for the damage-

plasticity model CDPM2 were ρ = 2300 kg/m3, E = 20 GPa, ν = 0.2, ft = 2.4 MPa, fc = 24 MPa, GF = 100 N/m.

The strain rate effect on the material properties was not considered and the hardening modulus was set to Hp = 0.01.

The value of the fracture energy GF corresponds to a displacement threshold of wf = 0.56 × 4.444 × GF/ft =

103.7× 10−6 m for the bilinear law described in Section 2. All other input parameters were chosen according to their

default values in [15]. For the reinforcement, the input parameters were ρ = 7850 kg/m3, E = 200 GPa, ν = 0.3, yield

stress σy = 500 MPa and plastic hardening modulus Ep = 0. For the coincident with slip approach, the additional

parameters of the bond-slip law were smax = 0.6 mm and τmax = 8 MPa according to [8]. Three tetrahedral meshes

with approximate element edge lengths he of 40, 20 and 10 mm were generated using T3D [41], so that nodes of

beam and tetrahedral elements coincide. Only for the beam elements representing the reinforcement, the used element

lengths were exact, since the beams were discretised regularly.

The results are presented in the form of normalised load versus strain, normalised axial force diagram of the steel

bar and contour plots of the maximum principal strains in the concrete specimen. The first set of results is for the

merged approach. The normalised load versus strain curves for the three meshes are shown in Figure 4a together

with the response of the bare steel. The normalised axial force Ns of the steel versus the normalised x-coordinate at

three load levels marked in Figure 4a are shown in Figure 4b. The force is normalised by the yield force Fy = Asσy,

where As is the cross-sectional area of the reinforcement bar. The second set of results are for the coincident with
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Figure 5: Mesh sensitivity study: Influence of three mesh sizes for coincident with slip approach on (a) normalised
load versus strain and (b) normalised axial force of the steel bar along the specimen length for three load levels marked
in part (a) of the figure.

slip approach. The normalised load-strain curves are shown in Figure 5a. The normalised axial force of the steel bar

versus the normalised x-coordinate at three load levels marked in Figure 5a are shown in Figure 5b.

For both approaches, the contour plots of the maximum principal strain are shown in Figure 6. Here, the colour

black refers to maximum principal strain equal or greater than 0.04 mm/he. This threshold was chosen to be mesh-

dependent so that for all meshes, the colour black refers to the same crack opening, since the elastic strain component

is much smaller than the inelastic strain component. The main cracking phase occurs between 30 and 50 % of the

yield load. In all analyses, tension stiffening is visible in the form of difference in the displacement of the reinforced

concrete prism and the plain steel bar at the same load level (Figures 4a and 5a). This difference is caused by the

stress transfer from the steel into the concrete faciliated by the bond between the two materials. In section in which

the both the steel and concrete contribute to the force transfer, the force in the steel is less than in sections in which

only the steel transfer the force. This reduction of the steel force due to the action of the concrete results in a smaller

displacement of the steel bar. The tension stiffening reproduced by the coarse mesh is less than for the fine mesh. At

yielding, the axial force is almost equal to the yield force, because the stress in the damaged region is close to zero.

However, the normalised axial diagrams for the two approaches in Figures 4b and 5b reveal significant differences. For

the merged approach in Figure 4b, the positions of peaks of axial force in the reinforcement, which corresponds to

the location of cracks, is dependent on the mesh size. Furthermore, the number of cracks is mesh dependent as well.

This dependence of crack position and number on mesh size for the merged approach is also visible in the contour

plots (Figure 6). On the other hand, the coincident with slip approach provides mesh-independent results (Figure 5b).

Both the position of the cracks as well as the number of cracks is independent of the mesh size. The agreement of the

analyses with different element sizes is particularly good for the medium and fine mesh. Despite this dependence on

mesh size for the merged approach, both approaches produce mesh-independent normalised force-strain curves for the
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Figure 6: Mesh sensitivity study: Contour plot of maximum principal strain for coarse, medium and fine meshes for
merged and coincident with slip approaches. Black and light grey correspond to large and small maximum principal
strains, respectively.

medium and the fine mesh. This is because the integral of the reduction of the axial force along reinforcement with

respect to the applied load level in Figure 4b is similar, although the position and number of axial force reductions

differs. Comparing the green and red lines in Figure 4b shows that between the two cracks (high values of axial force)

in the middle of the fine mesh, the steel force does not reduce significantly. Thus, the additional crack generated in

the fine mesh compared to the medium one does not influence the amount of tension stiffening significantly.

The results show that the crack approach together with the coincident with slip approach provides mesh-independent

crack patterns for reinforced concrete structures, if the mesh size is small enough. These 3D findings complement

the 2D results obtained in [46], where it was shown that crack band and merged approaches together provide mesh-

dependent results, but nonlocal models with the merged approach show a mesh insensitive response.

In Figures 4 and 5, the numerical results are compared with an analytical approximation of the tension stiffening

response of such a prism, which was proposed in the CEB-FIP textbook on updated knowledge of the CEB/FIP

Model Code [30]. For this approximation, the response is divided into four stages:

F =



EcAc (1 + αρs)
δ

L
for 0 < δ/L ≤ ft/Ec

Acft (1 + αρs) for ft/Ec < δ/L ≤ ft
0.6 + αρs
Esρs

AsEs

(
δ/L+

0.375ft
Esρs

)
for ft

0.6 + αρs
Esρs

< δ/L < σy/Es −
0.375ft
Esρs

Fy for σy/Es −
0.375ft
Esρs

< δ/L

(3)

In (3), Ec and Ac are the Young’s modulus and cross-sectional area of concrete, respectively. Furthermore, α = Es/Ec

and ρs = As/Ac. In the first part of (3), concrete is assumed to be uncracked and the strain in the concrete and steel are
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Figure 7: Mesh sensitivity study: Contour plot of maximum principal strain for the fine meshes for merged and
coincident with slip approaches in the x-z section at y = 0.05 m at three load levels marked in Figures 4 and 5. Black
and light grey correspond to large and small maximum principal strains, respectively.

assumed to be equal throughout the length of the specimen. This does not reproduce the situation in the numerical

analyses, since in the analysis the force is only applied to the ends of the reinforcement bar and not the concrete

faces, so that slip between the concrete and the reinforcement occurs at the end of the specimens. Consequently,

the numercial response is softer than the one predicted by the analytical solution. In (3), the uncracked stage is

followed by a crack formation phase during which the load is assumed to be constant. This is an idealisation of the

response observed in experiments in which the crack formation phase is accompanied by an increase of the normalised

load. For the numerical analyses, the merge approach predicts only a small increase of the normalised load during

the cracking stage, with the majority of the cracking occurring at approximately 30 % of the yield load, which is

in very good agreement with the analytical solution. However, for the coincident with slip approach, the cracking

phase occurs at two distinct stages at around 30 and 45 % of the yield load. In the next stage in (3), cracking is

stabilised and the response of the reinforced specimen is parallel to the one of the bare steel bar. Finally, the yielding

of the reinforcement occurs. Overall, the analytical approximation is in good agreement with the numerical results.

Particularly, the normalised load versus strain curves for the merged approach for the medium and fine mesh are in

very good agreement with this simplified approach.

A more detailed comparison of the contour plots for the merged and coincident with slip approaches reveals differences

in the crack evolution. For the merged approach, the contour plots of the maximum principal strain show longitudinal

surface cracks along the reinforcement bar which are not visible for coincident with slip approach. To investigate

the crack evolution further, contour plots of the maximum principal strain are compared for the two approaches in

the x-z plane at y = 0.05 m in Figure 7 at the three load levels marked in Figures 4 and 5. For both approaches,

significant cracking occurs in the centre of the specimen along the position of the reinforcement bar. This cracking

is slightly more prominent for the the merged approach than the coincident with slip approach, but is also clearly

visible for the latter. For the merged approach, the perpendicular cracks have all formed already at load level a, which

is in agreement with the results in Figure 4. For the coincident with slip approach, the first perpendicular crack in

the middle of the specimen formed at load level a. Then, at load level b all three perpendicular cracks have formed.

The detailed contour plots highlight that the merged approach does not correspond to a “perfect bond” situation.

Although the nodes of reinforcement and concrete have the same degrees of freedom in the axial direction, there
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is relative displacement between the concrete prism and the reinforcement due to the cracking in the longitudinal

direction along the reinforcement bar. This is the reason why the merged approach results in a limited number of

perpendicular cracks. The amount of slip will depend on the type of constitutive model used for the concrete. In the

present study, the constitutive model is capable of reproducing the general concrete response from multi-axial tension

to high confined compression.

If the benchmark was modelled by a single row of elements, the merged approach would produce cracks in every

element along the reinforcement bar, once the stress in the concrete reaches the strength. Thus, the finer the mesh,

the more elements crack. This would produce mesh-dependent results. The reason why the present 3D analyses do

not show cracking in every element is because the mesh is relatively fine. As a result, there are deformations in

the elements adjacent to the reinforcement bar, which act in a way similar as a bond-slip model. However, these

deformations are mesh-dependent, which results in the observed mesh-dependent results. For the coincident with

slip approach, the relative displacement between steel and concrete is dominated by the introduced bond-slip model,

which is based on a mesh-independent force-displacement law. Therefore, the results are mesh-independent using this

approach. However, since the longitudinal cracking is also visible for the coincident with slip approach, it influences

the relative displacement between the interaction of reinforcement and concrete. If it is assumed that bond-slip

laws are commonly extracted from experiments in which the slip is the relative displacement between concrete and

reinforcement, the bond-slip law used in analyses should be ideally determined from an inverse analysis.

4 Comparison with experiments

The merged and coincident with slip approaches were applied to the analysis of two experiments reported in the

literature. In the previous section, it was shown that the two approaches provide almost mesh independent load-

displacement curves for tension stiffening analyses, but that the crack patterns obtained with these approaches differ.

The merged approach provides mesh-dependent crack patterns, whereas the crack patterns obtained with the coincident

with slip approach is mesh-independent. In the following two sections the performance of the two approaches will be

further investigated by comparing them with experimental results.

4.1 Tension stiffening experiments

In the first set of analyses, tension stiffening experiments for plain and fibre reinforced concrete reported in [5] were

simulated. This type of experiment is commonly used to determine the mean crack spacing of reinforced concrete [4, 5].

In the experiments in [5], it was shown that the use of fibre reinforced concrete results in smaller crack spacing than

for plain concrete. Here, it is investigated if the merged and coincident with slip approach are capable to reproduce

the influence of the type of concrete on the crack spacing. The geometry and loading setup is shown in Figure 8,
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Figure 8: Tension stiffening experiment: Geometry and loading setup according to [5].

which is longer than the specimen in section 3, but otherwise of very similar geometry. Again, it consists of a concrete

prism with a single reinforcement bar centrically embedded. Both load, in the form of a prescribed displacement, and,

support are applied to the ends of the reinforcement directly. One difference is that, the 40 mm end regions of the

reinforcement were made of a larger diameter (φ = 19.5 mm) so that bridging stresses across cracks present in the

fibre reinforced concrete did not result in yielding at the end of the reinforcement bar before yielding in a cracked

section would occur [5].

The input parameters were chosen to match as much as possible the experimental results. For plain concrete, the input

parameters for the damage-plasticity model CDPM2 were ρ = 2300 kg/m3, E = 39.7 GPa, ν = 0.2, ft = 5.42 MPa,

fc = 62.8 MPa, GF = 153 N/m. The strain rate effect on the material properties were not considered and the

hardening modulus was set to Hp = 0.01. The value of the fracture energy GF resulted in a displacement threshold of

wf = 0.56× 4.444×GF/ft = 70.1× 10−6 m. All other input parameters were chosen according to their default values

in [15]. For fibre reinforced concrete, a modified bi-linear stress-crack opening curve was used to simulate the effect of

the presence of fibres. The first displacement threshold in Figure 2a was set to wf1 = 0.15wf = 0.15× 70.1× 10−6 =

10.5×10−6 m, as it was done for plain concrete according to the recommended input for CDPM2. Also, the intermediate

stress value was set to its default value ft1 = 0.3ft. The final threshold was set to wf →∞, i.e. the inclination of the

second branch of the stress-crack opening curve was set to zero. All other parameters where kept the same as for plain

concrete. Thus, it was assumed that the initial fracture energy of plain and fibre reinforced concrete is the same, but

the bridging stress across the crack remains constant at ft1 for fibre reinforced concrete. Shrinkage measured in the

experiments in [5] has been considered in the numerical analyses in LS-DYNA using the techniques described in [43].

With this technique, the explicit dynamic simulation was preceded by an implicit stage at which a shrinkage strain of

εs = 470 × 10−6, as reported in [5], was applied. For the reinforcement, the input parameters were ρ = 7850 kg/m3,

E = 202 GPa, ν = 0.3, σy = 420 MPa and Ep = 0. For the coincident slip approach, the parameters of the bond-slip

law were smax = 0.6 mm and τmax = 14.8 MPa according to the CEB-FIP Model Code 1990 [8]. A tetrahedral mesh

with an approximate element edge length of he = 10 mm was used.

For plain concrete, the response of the nonlinear finite element model with the merged and coincident with slip

approach are presented in Figure 9 in the form of normalised load versus average strain and normalised axial force in

the reinforcement at three load levels marked in the load-strain curve. The strain is calculated as ε = δ/L, where δ is

the end displacement of the reinforcement and L is the length of the specimen. The normalised load-strain plots in
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Figure 9: Tension stiffening experiment for plain concrete: Comparison of finite element results with merged and
coincident with slip approach compared to experiments reported in [5] in the form of (a) normalised load versus
average strain and (b) normalised axial force in the reinforcement at three load levels marked in the load-strain curve.

Figure 9a are overall in good agreement with the experiments and the tension stiffening effect is well represented by

both the merged and coincident with slip approach. The normalised axial force distribution in Figure 9b shows that

similar to the results for the mesh sensitivity study the merged approach produces more cracks, indicated by the peaks

in axial force, than the coincident with slip approach. Both approaches underestimate the number of cracks observed in

the experiments. In the simulations for plain concrete, the average crack spacing was 220 mm for the merged approach

and 275 mm for the coincident with slip approach, whereas in the experiments an average crack spacing of 152 mm was

reported [5]. For load level a, the normalised axial force is for both approaches in compression along the majority of

the specimen, because of the initially applied shrinkage strain. For fibre reinforced concrete, the results are presented

in Figure 10. Again, the normalised load versus average strain curves of the analyses match well the experimental

results, despite the use of the highly idealised stress-crack opening curve. At yielding of the reinforcement, the axial

force transmitted at the ends of the reinforcement bar is greater than the yield force of the reinforcement, because

of the bridging stress provided by the fibres that is transmitted across the cracks (Figure 10a). In comparison, for

plain concrete, the cracks were almost stress free at this stage so that axial force and yield force coincided at the

onset of yielding (Figure 9a). This additional stress transfer across the cracks is also visible in Figure 10b, where it

is shown that the axial force at the end of the reinforcement bar is higher than within the specimen. The average

crack spacings of the merged and coincident with slip approaches are 138 mm and 183 mm, respectively, whereas

the experimental crack patterns show a spacing of 85 mm. Again, the numerical simulations overestimate the crack

spacing. However, the simulations predicted the reduction of crack spacing due to the presence of fibres, which was

represented by a change of the stress-crack opening curve. The numerically obtained crack patterns are also shown in

the form of contour plots of the maximum principal strain for plain and fibre reinforced concrete in Figure 11. Here,

black corresponds to a maximum principal strain which is equal or greater than 0.008.
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Figure 10: Tension stiffening experiment for fibre reinforced concrete: Comparison of finite element results with merged
and coincident with slip approach compared to experiments reported in [5] in the form of (a) load versus average strain
and (b) normalised axial stress in the reinforcement.
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Figure 11: Tension stiffening experiment: Contour plot of maximum principal strain for merged and coincident with
slip approaches for plain and fibre reinforced concrete. Black and light grey correspond to large and small maximum
principal strains, respectively.
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Figure 12: Drop weight impact test: Geometry and loading setup of a drop weight impact test for a reinforced concrete
beam in [28, 26].

4.2 Drop weight impact test

The second set of analyses were aimed to reproduce experimental results of drop weight impact tests reported in

[28, 26]. In these experiments, a cylindrical steel weight with mass 10.1 kg was dropped from a height of 5.5 m onto a

simply supported concrete beam reinforced with four symmetrically arranged steel bars. The geometry and setup of

the drop weight impact test is shown in Figure 12. The input parameters were chosen based on the experimental results

reported in [28, 26]. For concrete, the input parameters for the damage-plasticity model CDPM2 were ρ = 2400 kg/m3,

E = 34.7 GPa, ν = 0.2, ft = 3.28 MPa, fc = 45.5 MPa, GF = 113 N/m. The strain rate effect on the response of

concrete was not considered and the hardening modulus of the plasticity part was set to Hp = 0.01. The value of the

fracture energy GF resulted in a displacement threshold of wf = 0.56 × 4.444 × GF/ft = 86 × 10−6 m. The strain

threshold from the inelastic stress-strain curve in Figure 2b for the determination of the compressive damage variable

was increased from the default value from 1 × 10−4 to εf = 1 × 10−3 to avoid premature failure of the region below

the point at which the drop weight impacts the concrete specimen. All other input parameters were chosen according

to their default values [15]. The drop weight was modelled to be elastic with the input parameters ρ = 7753 kg/m3,

E = 200 GPa and ν = 0.3. In the experiments, the drop weight contained a hole, which was not modelled here. Instead,

the density was adjusted so that the correct weight was obtained. Furthermore, the drop weight in the experiments

had a curved head with a radius of 400 mm [28, 26], which was not considered in the analysis. For the reinforcement,

the input parameters were ρ = 7850 kg/m3, E = 200 GPa, ν = 0.3, σy = 610 MPa and Ep = 584 MPa. For the

coincident slip approach, the parameters of the bond-slip law were smax = 0.6 mm and τmax = 12.2 MPa according

to the CEB-FIP Model Code 1990 [8]. A tetrahedral mesh with an approximate element edge length of 5 mm was

used. The mesh is finer than in the previous set of analyses, since in the drop weight impact tests a reinforcement

diameter of 6 mm was used, instead of the 16 mm one in the tension stiffening experiment [5]. Therefore, the crack

spacing in the drop weight impact test is expected to be much smaller than in the tension stiffening experiment in

sections 3 and 4.1, since it is known that crack spacing decreases with decreasing diameter of the reinforcement bar
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Figure 13: Drop weight impact test: Comparison of displacement δ of the top middle of the beam versus time for
numerical analyses with merged, coincident with slip and experimental results reported in [28, 26].

[8].

In Figure 13, the results with the merged and the coincident with slip approach are presented in the form of the

displacement δ versus time for the middle top of the beam at the point where the weight impacts the beam (Figure 12).

The mean of five experimental displacement versus time curves is shown in comparison to the numerical results. The

numerical maximum principal strain contour plots representing crack patterns for the two approaches are compared to

Digital Image Correlation (DIC) results for one of the experiments in Figures 14 and 15 for two stages at 0.8 and 9.5 ms,

respectively, marked in Figure 13. DIC has been used in the past to record cracking processes in reinforced concrete

structures [18, 33] and has been shown to work for high speed processes [39]. In the present experimental study, a high

speed camera was used to take images every 2 ms. The software GOM-correlate was then used to apply DIC to the

images taken from the high speed camera. For the contour plots obtained from the simulations, black corresponds to a

maximum principal strain equal or greater than 0.016. For the experimental DIC, black corresponds to crack openings

which would correspond to stress free cracks. However, the exact value of the crack opening was not determined from

the experiments. The displacement versus time curves for the two approaches are overall in good agreement with the

experimental results. Furthermore, the strain contours of both approaches represent well the crack patterns observed

in the experiments. Closer inspection reveals differences in the results of the two approaches. The use of the merged

approach results in more cracks than the one of the coincident with slip approach. This is in agreement with the

results presented in the previous sections in which the crack spacing obtained with the merged approach is smaller

than with the coincident with slip approach.

As a comparison with the experimental and numerical results of the drop weight test, a rough estimate of the expected

mid-beam displacement is made using a simplified calculation. This estimate is based on energy equilibrium, theory
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Figure 14: Drop weight impact test: Contour plot of maximum principal strain for merged and coincident with slip
approaches compared to DIC results from experiments reported in [28, 26] at 0.8 ms. For the finite element analyses,
black and light grey correspond to large and small maximum principal strains, respectively. For the experimental DIC
results, black refers to large crack opening.
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Figure 15: Drop weight impact test: Contour plot of maximum principal strain for merged and coincident with slip
approaches compared to DIC results from experiments reported in [28, 26] at 9.5 ms. For the finite element analyses,
black and light grey correspond to large and small maximum principal strains, respectively. For the experimental DIC
results, black refers to large crack opening.
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Figure 16: Drop weight impact test: Simplified bilinear load-displacement relation used for the reinforced beam. The
relation is based on the moment of inertia of a cracked beam section III and the bending moment capacity MRd of a
simply supported beam subjected to a static point load in the middle of the beam.

of plastic impact and an equivalent single degree of freedom system (SDOF) as described in e.g. [3, 24]. Based on the

input data in Figure 12, the kinetic energy of the drop weight just prior to impact is

Ek,0 =
mwv

2
y

2
= 541 Nm (4)

Assuming plastic impact, the external work acting on the concrete beam is

We =
mw

mw +mb
Ek,0 (5)

where mb = κmFmbeam is the effective mass of the beam. For a beam with a plastic response, and subjected to a

point load, it was shown that κmF = 0.333 [24]. Together with mbeam = 24 kg (mass of beam within span length 1 m),

mb = 8 kg. From this, the external work in (5) is determined as We = 302 Nm.

The external work We is balanced by the internal work Wi in the loaded structure. Using a simplified bilinear

load-displacement relation as that shown in Figure 16, the internal work is

Wi =

∫ utot

0

R (u) du = Wi,el +Wi,pl =
RRduel

2
+RRdupl (6)

Taking into account the influence of both upper and lower reinforcement bars in the cross section, the moment capacity

was determined as MRd = 2.84 kNm. Assuming a cracked stiffness (state II) along the whole beam length, the load

capacity and elastic deformation were determined as RRd = 11.3 kN and uel = 4.7 mm, respectively. From (6), the

plastic deformation is upl = 24.3 mm. Therefore, the total displacement is utot = uel + upl = 29 mm. Comparing this

displacement with uFEM = 26 mm the finite element analysis, indicates further that the numerical results are realistic

for this test-setup.

21

http://dx.doi.org/10.20944/preprints201704.0118.v2


5 Conclusions

Two approaches to the numerical modelling of bond, called merged and coincident with slip, for the failure analysis

of reinforced concrete were investigated by means of a mesh sensitivity study and two comparisons with experiments.

The mesh sensitivity study in section 3 shows that the merged approach produces mesh dependent crack numbers and

spacings. The finer the mesh is, the more cracks and therefore smaller spacings are produced. On the other hand,

the coincident with slip approach produces mesh independent crack patterns, if fine enough meshes are used. Both

approaches reproduce almost mesh independent load-displacement results.

The analyses of the tension stiffening experiments with plain and fibre reinforced concrete in section 4.1 show that both

the merged and the coincident with slip approach are capable of reproducing smaller crack spacings for fibre reinforced

concrete than for plain concrete, which is in agreement with the experimental results. However, both approaches are

underestimating the number of cracks reported in the experiments. Both approaches are also capable of reproducing

reasonably well the response of the drop weight impact test.
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[9] Červenka, J. and Papanikolaou, V. K. Three dimensional combined fracture-plastic material model for concrete.

International Journal of Plasticity, 24(12):2192–2220, 2008.
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