7 research outputs found

    Inter- and Intraobserver Variation in the Assessment of Preoperative Colostograms in Male Anorectal Malformations: An ARM-Net Consortium Survey

    Get PDF
    Aim: Male patients with anorectal malformations (ARM) are classified according to presence and level of the recto-urinary fistula. This is traditionally established by a preoperative high-pressure distal colostogram that may be variably interpreted by different surgeons. The aim of this study was to evaluate the inter- and intraobserver variation in the assessment by pediatric surgeons of preoperative colostograms with respect to the level of the recto-urinary fistula. Materials and Methods: Sixteen pediatric surgeons from 14 European centers belonging to the ARM-Net Consortium twice scored 130 images of distal colostograms taken in sagittal projection at a median age of 66 days of life (range: 4–1,106 days). Surgeons were asked to classify the fistula in bulbar, prostatic, bladder-neck, no fistula, and “unclear anatomy” example. Their assessments were compared with the intraoperative findings (kappa) for two scoring rounds with an interval of 6 months (intraobserver variation). Agreement among the surgeons' scores (interobserver variation) was also calculated using Krippendorff's alpha. A kappa over 0.75 is considered excellent, between 0.40 and 0.75 fair to good, and below 0.40 poor. Surgeons were asked to score the images in “poor” and “good” quality and to provide their years of experience in ARM treatment. Results: Agreement between the image-based rating of surgeons and the intraoperative findings ranges from 0.06 to 0.45 (mean 0.31). Interobserver variation is higher (Krippendorff's alpha between 0.40 and 0.45). Years of experience in ARM treatment does not seem to influence the scoring. The mean intraobserver variation between the two rounds is 0.64. Overall, the quality of the images is considered poor. Images categorized as having a good quality result in a statistically significant higher kappa (mean: 0.36 and 0.37 in the first and second round, respectively) than in the group of bad-quality images (mean: 0.25 and 0.23, respectively). Conclusions: There is poor agreement among experienced pediatric colorectal surgeons on preoperative colostograms. Techniques and analyses of images need to be improved in order to generate a homogeneou

    Whole exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association

    Get PDF
    Congenital abnormalities of the kidney and urinary tract (CAKUT) account for approximately half of children with chronic kidney disease and they are the most frequent cause of end-stage renal disease in children in the US. However, its genetic etiology remains mostly elusive. VACTERL association is a rare disorder that involves congenital abnormalities in multiple organs including the kidney and urinary tract in up to 60% of the cases. By homozygosity mapping and whole exome resequencing combined with high-throughput mutation analysis by array-based multiplex PCR and next-generation sequencing, we identified recessive mutations in the gene TNF receptor-associated protein 1 (TRAP1) in two families with isolated CAKUT and three families with VACTERL association. TRAP1 is a heat shock protein 90-related mitochondrial chaperone possibly involved in antiapoptotic and endoplasmic reticulum-stress signaling. Trap1 is expressed in renal epithelia of developing mouse kidney E13.5 and in the kidney of adult rats, most prominently in proximal tubules and in thick medullary ascending limbs of Henle’s loop. Thus, we identified mutations in TRAP1 as highly likely causing CAKUT or CAKUT in VACTERL association

    De novo microduplications at 1q41, 2q37.3, and 8q24.3 in patients with VATER/VACTERL association

    No full text
    Item does not contain fulltextThe acronym VATER/VACTERL association describes the combination of at least three of the following congenital anomalies: vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). We aimed to identify highly penetrant de novo copy number variations (CNVs) that contribute to VATER/VACTERL association. Array-based molecular karyotyping was performed in a cohort of 41 patients with VATER/VACTERL association and 6 patients with VATER/VACTERL-like phenotype including all of the patients' parents. Three de novo CNVs were identified involving chromosomal regions 1q41, 2q37.3, and 8q24.3 comprising one (SPATA17), two (CAPN10, GPR35), and three (EPPK1, PLEC, PARP10) genes, respectively. Pre-existing data from the literature prompted us to choose GPR35 and EPPK1 for mouse expression studies. Based on these studies, we prioritized GPR35 for sequencing analysis in an extended cohort of 192 patients with VATER/VACTERL association and VATER/VACTERL-like phenotype. Although no disease-causing mutation was identified, our mouse expression studies suggest GPR35 to be involved in the development of the VATER/VACTERL phenotype. Follow-up of GPR35 and the other genes comprising the identified duplications is warranted
    corecore