5 research outputs found

    A protocol for dual calcium-voltage optical mapping in murine sinoatrial preparation with optogenetic pacing

    Get PDF
    Among the animal models for studying the molecular basis of atrial and sinoatrial node (SAN) biology and disease, the mouse is a widely used species due to its feasibility for genetic modifications in genes encoding ion channels or calcium handling and signaling proteins in the heart. It is therefore highly valuable to develop robust methodologies for studying SAN and atrial electrophysiological function in this species. Here, we describe a protocol for performing dual calcium-voltage optical mapping on mouse sinoatrial preparation (SAP), in combination with an optogenetic approach, for studying SAP membrane potential, intracellular Ca2+ transients, and pacemaker activity. The protocol includes the details for preparing the intact SAP, robust tissue dual-dye loading, light-programmed pacing, and high-resolution optical mapping. Our protocol provides an example of use of the combination of optogenetic and optical mapping techniques for investigating SAP membrane potential and intracellular Ca2+ transients and pacemaker activity with high temporal and spatial resolution in specific cardiac tissues. Thus, our protocol provides a useful tool for studying SAP physiology and pathophysiology in mice

    Generation of cardiomyocytes from human-induced pluripotent stem cells resembling atrial cells with ability to respond to adrenoceptor agonists

    Get PDF
    Atrial fibrillation (AF) is the most common chronic arrhythmia presenting a heavy disease burden. We report a new approach for generating cardiomyocytes (CMs) resembling atrial cells from human-induced pluripotent stem cells (hiPSCs) using a combination of Gremlin 2 and retinoic acid treatment. More than 40% of myocytes showed rod-shaped morphology, expression of CM proteins (including ryanodine receptor 2, α-actinin-2 and F-actin) and striated appearance, all of which were broadly similar to the characteristics of adult atrial myocytes (AMs). Isolated myocytes were electrically quiescent until stimulated to fire action potentials with an AM profile and an amplitude of approximately 100 mV, arising from a resting potential of approximately −70 mV. Single-cell RNA sequence analysis showed a high level of expression of several atrial-specific transcripts including NPPA, MYL7, HOXA3, SLN, KCNJ4, KCNJ5 and KCNA5. Amplitudes of calcium transients recorded from spontaneously beating cultures were increased by the stimulation of α-adrenoceptors (activated by phenylephrine and blocked by prazosin) or β-adrenoceptors (activated by isoproterenol and blocked by CGP20712A). Our new approach provides human AMs with mature characteristics from hiPSCs which will facilitate drug discovery by enabling the study of human atrial cell signalling pathways and AF. This article is part of the theme issue ‘The heartbeat: its molecular basis and physiological mechanisms’

    Dbh+ catecholaminergic cardiomyocytes contribute to the structure and function of the cardiac conduction system in murine heart

    No full text
    The heterogeneity of functional cardiomyocytes arises during heart development, which is essential to the complex and highly coordinated cardiac physiological function. Yet the biological and physiological identities and the origin of the specialized cardiomyocyte populations have not been fully comprehended. Here we report a previously unrecognised population of cardiomyocytes expressing Dbh gene encoding dopamine beta-hydroxylase in murine heart. We determined how these myocytes are distributed across the heart by utilising advanced single-cell and spatial transcriptomic analyses, genetic fate mapping and molecular imaging with computational reconstruction. We demonstrated that they form the key functional components of the cardiac conduction system by using optogenetic electrophysiology and conditional cardiomyocyte Dbh gene deletion models. We revealed their close relationship with sympathetic innervation during cardiac conduction system formation. Our study thus provides new insights into the development and heterogeneity of the mammalian cardiac conduction system by revealing a new cardiomyocyte population with potential catecholaminergic endocrine function

    Integrated transcriptome and lineage analyses reveal novel catecholaminergic cardiomyocytes contributing to the cardiac conduction system in murine heart

    No full text
    Summary Cardiac conduction system (CCS) morphogenesis is essential for correct heart function yet is incompletely understood. Here we established the transcriptional landscape of cell types populating the developing heart by integrating single-cell RNA sequencing and spatial enhanced resolution omics-sequencing (Stereo-seq). Stereo-seq provided a spatiotemporal transcriptomic cell fate map of the murine heart with a panoramic field of view and in situ cellular resolution of the CCS. This led to the identification of a previously unrecognized cardiomyocyte population expressing dopamine beta-hydroxylase ( Dbh + -CMs), which is closely associated with the CCS in transcriptomic analyses. To confirm this finding, genetic fate mapping by using Dbh Cre /Rosa26-tdTomato reporter mouse line was performed with Stereo-seq, RNAscope, and immunohistology. We revealed that Dbh + -derived CMs first emerged in the sinus venosus at E12.5, then populated the atrial and ventricular CCS components at E14.5, with increasing abundance towards perinatal stages. Further tracing by using Dbh CFP reporter and Dbh CreERT /Rosa26-tdTomato inducible reporter, we confirmed that Dbh + -CMs are mostly abundant in the AVN and ventricular CCS and this persists in the adult heart. By using Dbh Cre /Rosa26-tdTomato/Cx40-eGFP compound reporter line, we validated a clear co-localization of tdTomato and eGFP signals in both left and right ventricular Purkinje fibre networks. Finally, electrophysiological optogenetic study using cell-type specific Channelrhodopsin2 (ChR2) expression further elucidated that Dbh + -derived CMs form a functional part of the ventricular CCS and display similar photostimulation-induced electrophysiological characteristics to Cx40 CreERT /ChR2-tdTomato CCS components. Thus, by utilizing advanced transcriptomic, mouse genetic, and optogenetic functional analyses, our study provides new insights into mammalian CCS development and heterogeneity by revealing novel Dbh + -CMs. Highlights Stereo-seq provided a spatiotemporal transcriptomic cell fate map of the murine heart with a panoramic field of view and in situ cellular resolution of the CCS. Established the transcriptional landscape of cell types populating the developing murine heart. Revealed previously unreported catecholaminergic cardiomyocyte populations contributing to the developing and mature murine cardiac conduction system
    corecore