108 research outputs found

    Non-destructive Three-dimensional Imaging of Artificially Degraded CdS Paints by Pump-probe Microscopy

    Full text link
    Cadmium sulfide (CdS) pigments have degraded in several well-known paintings, but the mechanisms of degradation have yet to be fully understood. Traditional non-destructive analysis techniques primarily focus on macroscopic degradation, whereas microscopic information is typically obtained with invasive techniques that require sample removal. Here, we demonstrate the use of pump-probe microscopy to nondestructively visualize the three-dimensional structure and degradation progress of CdS pigments in oil paints. CdS pigments, reproduced following historical synthesis methods, were artificially aged by exposure to high relative humidity (RH) and ultraviolet (UV) light. Pump-probe microscopy was applied to track the degradation progress in single grains, and volumetric imaging revealed early CdS degradation of small particles and on the surface of large particles. This indicates that the particle dimension influences the extent and evolution of degradation of historical CdS. In addition, the pump-probe signal decrease in degraded CdS is observable before visible changes to the eye, demonstrating that pump-probe microscopy is a promising tool to detect early-stage degradation in artworks. The observed degradation by pump-probe microscopy occurred through the conversion from CdS into CdSO4.xH2O, verified by both FTIR (Fourier-transform infrared) and XPS (X-ray photoelectron spectroscopy) experiment

    Focal cerebral ischemia in the TNFalpha-transgenic rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine if chronic elevation of the inflammatory cytokine, tumor necrosis factor-α (TNFα), will affect infarct volume or cortical perfusion after focal cerebral ischemia.</p> <p>Methods</p> <p>Transgenic (TNFα-Tg) rats overexpressing the murine TNFα gene in brain were prepared by injection of mouse DNA into rat oocytes. Brain levels of TNFα mRNA and protein were measured and compared between TNFα-Tg and non-transgenic (non-Tg) littermates. Mean infarct volume was calculated 24 hours or 7 days after one hour of reversible middle cerebral artery occlusion (MCAO). Cortical perfusion was monitored by laser-Doppler flowmetry (LDF) during MCAO. Cortical vascular density was quantified by stereology. Post-ischemic cell death was assessed by immunohistochemistry and regional measurement of caspase-3 activity or DNA fragmentation. Unpaired <it>t </it>tests or analysis of variance with post hoc tests were used for comparison of group means.</p> <p>Results</p> <p>In TNFα-Tg rat brain, the aggregate mouse and rat TNFα mRNA level was fourfold higher than in non-Tg littermates and the corresponding TNFα protein level was increased fivefold (p ≤ 0.01). Infarct volume was greater in TNFα-Tg rats than in non-Tg controls at 24 hours (p ≤ 0.05) and 7 days (p ≤ 0.01). Within the first 10 minutes of MCAO, cortical perfusion measured by LDF was reduced in TNFα-Tg rats (p ≤ 0.05). However, regional vascular density was equivalent between TNFα-Tg and non-Tg animals (p = NS). Neural cellular apoptosis was increased in transgenic animals as shown by elevated caspase-3 activity (p ≤ 0.05) and DNA fragmentation (p ≤ 0.001) at 24 hours.</p> <p>Conclusion</p> <p>Chronic elevation of TNFα protein in brain increases susceptibility to ischemic injury but has no effect on vascular density. TNFα-Tg animals are more susceptible to apoptotic cell death after MCAO than are non-Tg animals. We conclude that the TNFα-Tg rat is a valuable new tool for the study of cytokine-mediated ischemic brain injury.</p

    Delivery of an Ebola Virus-Positive Stillborn Infant in a Rural Community Health Center, Sierra Leone, 2015.

    Get PDF
    We report the case of an Ebola virus (EBOV) RNA-negative pregnant woman who delivered an EBOV RNA-positive stillborn infant at a community health center in rural Sierra Leone, 1 month after the mother's last possible exposure. The mother was later found to be immunoglobulins M and G positive indicating previous infection. The apparent absence of Ebola symptoms and not recognizing that the woman had previous contact with an Ebola patient led health workers performing the delivery to wear only minimal personal protection, potentially exposing them to a high risk of EBOV infection. This case emphasizes the importance of screening for epidemiological risk factors as well as classic and atypical symptoms of Ebola when caring for pregnant women, even once they have passed the typical time frame for exposure and incubation expected in nonpregnant adults. It also illustrates the need for health-care workers to use appropriate personal protection equipment when caring for pregnant women in an Ebola setting

    An extensive phenotypic characterization of the hTNFα transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor necrosis factor alpha (TNFα) is implicated in a wide variety of pathological and physiological processes, including chronic inflammatory conditions, coronary artery disease, diabetes, obesity, and cachexia. Transgenic mice expressing human TNFα (hTNFα) have previously been described as a model for progressive rheumatoid arthritis. In this report, we describe extensive characterization of an hTNFα transgenic mouse line.</p> <p>Results</p> <p>In addition to arthritis, these hTNFα transgenic mice demonstrated major alterations in body composition, metabolic rate, leptin levels, response to a high-fat diet, bone mineral density and content, impaired fertility and male sexual function. Many phenotypes displayed an earlier onset and a higher degree of severity in males, pointing towards a significant degree of sexual dimorphism in response to deregulated expression of TNFα.</p> <p>Conclusion</p> <p>These results highlight the potential usefulness of this transgenic model as a resource for studying the progressive effects of constitutively expressed low levels of circulating TNFα, a condition mimicking that observed in a number of human pathological conditions.</p

    Primary sequence and epigenetic determinants of in vivo occupancy of genomic DNA by GATA1

    Get PDF
    DNA sequence motifs and epigenetic modifications contribute to specific binding by a transcription factor, but the extent to which each feature determines occupancy in vivo is poorly understood. We addressed this question in erythroid cells by identifying DNA segments occupied by GATA1 and measuring the level of trimethylation of histone H3 lysine 27 (H3K27me3) and monomethylation of H3 lysine 4 (H3K4me1) along a 66 Mb region of mouse chromosome 7. While 91% of the GATA1-occupied segments contain the consensus binding-site motif WGATAR, only ∼0.7% of DNA segments with such a motif are occupied. Using a discriminative motif enumeration method, we identified additional motifs predictive of occupancy given the presence of WGATAR. The specific motif variant AGATAA and occurrence of multiple WGATAR motifs are both strong discriminators. Combining motifs to pair a WGATAR motif with a binding site motif for GATA1, EKLF or SP1 improves discriminative power. Epigenetic modifications are also strong determinants, with the factor-bound segments highly enriched for H3K4me1 and depleted of H3K27me3. Combining primary sequence and epigenetic determinants captures 52% of the GATA1-occupied DNA segments and substantially increases the specificity, to one out of seven segments with the required motif combination and epigenetic signals being bound

    Purinergic Receptor Stimulation Reduces Cytotoxic Edema and Brain Infarcts in Mouse Induced by Photothrombosis by Energizing Glial Mitochondria

    Get PDF
    Treatments to improve the neurological outcome of edema and cerebral ischemic stroke are severely limited. Here, we present the first in vivo single cell images of cortical mouse astrocytes documenting the impact of single vessel photothrombosis on cytotoxic edema and cerebral infarcts. The volume of astrocytes expressing green fluorescent protein (GFP) increased by over 600% within 3 hours of ischemia. The subsequent growth of cerebral infarcts was easily followed as the loss of GFP fluorescence as astrocytes lysed. Cytotoxic edema and the magnitude of ischemic lesions were significantly reduced by treatment with the purinergic ligand 2-methylthioladenosine 5′ diphosphate (2-MeSADP), an agonist with high specificity for the purinergic receptor type 1 isoform (P2Y1R). At 24 hours, cytotoxic edema in astrocytes was still apparent at the penumbra and preceded the cell lysis that defined the infarct. Delayed 2MeSADP treatment, 24 hours after the initial thrombosis, also significantly reduced cytotoxic edema and the continued growth of the brain infarction. Pharmacological and genetic evidence are presented indicating that 2MeSADP protection is mediated by enhanced astrocyte mitochondrial metabolism via increased inositol trisphosphate (IP3)-dependent Ca2+ release. We suggest that mitochondria play a critical role in astrocyte energy metabolism in the penumbra of ischemic lesions, where low ATP levels are widely accepted to be responsible for cytotoxic edema. Enhancement of this energy source could have similar protective benefits for a wide range of brain injuries
    corecore