108 research outputs found
First measurement of the magnetic field on FK Com and its relation to the contemporaneous starspot locations
In this study we present simultaneous low-resolution longitudinal magnetic
field measurements and high-resolution spectroscopic observations of the cool
single giant FK Com. The variation of the magnetic field over the rotational
period of 2.4 days is compared with the starspot location obtained using
Doppler imaging techniques, V-band photometry and V-I colours. The
chromospheric activity is studied simultaneously with the photospheric activity
using high resolution observations of the Halpha, Hbeta and Hgamma line
profiles. Both the maximum (272 +/- 24 G) and minimum (60 +/- 17 G) in the mean
longitudinal magnetic field, , are detected close to the phases where cool
spots appear on the stellar surface. A possible explanation for such a
behaviour is that the active regions at the two longitudes separated by 0.2 in
phase have opposite polarities.Comment: 10 Pages, 11 figures (quality of Figures 7,8 and 10 reduced),
accepted for publication in MNRA
Providing Remote Access to Robotic Telescopes by Adopting Grid Technology
We present an architecture for enabling remote access to robotic telescopes through the adoption of Grid technology. With this architecture, Internet connected robotic telescopes form a global network and are controlled by a global resource management system (scheduler), similar to individual compute resources in a Grid. By virtualizing the access to these telescope resources and by describing them and observation requests in a generic language (RTML). Astronomers are provided with an interface to a telescope network, from which they can get the appropriate resources for their observations. Moreover, new kinds of coordinated observations become feasible, such as multi-wavelength campaigns or immediate and continuous monitoring of transient astronomical events. This paper describes the architecture, the processing of observation requests and new research topics in a global network of robotic telescopes
Ellipsoidal primary of the RS CVn binary zeta And: Investigation using high-resolution spectroscopy and optical interferometry
We have obtained high-resolution spectroscopy, optical interferometry, and
long-term broad band photometry of the ellipsoidal primary of the RS CVn-type
binary system zeta And. Based on the optical interferometry the apparent limb
darkened diameter of zeta And is 2.55 +/- 0.09 mas using a uniform disk fit.
The Hipparcos distance and the limb-darkened diameter obtained with a uniform
disk fit give stellar radius of 15.9 +/- 0.8 Rsolar, and combined with
bolometric luminosity, it implies an effective temperature of 4665 +/- 140 K.
The temperature maps obtained from high resolution spectra using Doppler
imaging show a strong belt of equatorial spots and hints of a cool polar cap.
The equatorial spots show a concentration around the phase 0.75. This spot
configuration is reminiscent of the one seen in the earlier published
temperature maps of zeta And. Investigation of the Halpha line reveals both
prominences and cool clouds in the chromosphere. Long-term photometry spanning
12 years shows hints of a spot activity cycle, which is also implied by the
Doppler images, but the cycle length cannot be reliably determined from the
current data.Comment: 9 pages, 9 figures, accepted for A&
FK Comae Berenices, King of Spin: The COCOA-PUFS Project
COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast
spinning, heavily spotted, yellow giant FK Com (HD117555; G4 III). This single
star is thought to be a recent binary merger, and is exceptionally active by
measure of its intense ultraviolet and X-ray emissions, and proclivity to
flare. COCOA-PUFS was carried out with Hubble Space Telescope in the UV
(120-300 nm), using mainly its high-performance Cosmic Origins Spectrograph,
but also high-precision Space Telescope Imaging Spectrograph; Chandra X-ray
Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy
Transmission Grating Spectrometer; together with supporting photometry and
spectropolarimetry in the visible from the ground. This is an introductory
report on the project.
FK Com displayed variability on a wide range of time scales, over all
wavelengths, during the week-long main campaign, including a large X-ray flare;
"super-rotational broadening" of the far-ultraviolet "hot-lines" (e.g., Si IV
139 nm (T~80,000 K) together with chromospheric Mg II 280 nm and C II 133 nm
(10,000-30,000 K); large Doppler swings suggestive of bright regions
alternately on advancing and retreating limbs of the star; and substantial
redshifts of the epoch-average emission profiles. These behaviors paint a
picture of a highly extended, dynamic, hot (10 MK) coronal magnetosphere around
the star, threaded by cooler structures perhaps analogous to solar prominences,
and replenished continually by surface activity and flares. Suppression of
angular momentum loss by the confining magnetosphere could temporarily postpone
the inevitable stellar spindown, thereby lengthening this highly volatile stage
of coronal evolution.Comment: to be published in ApJ
Coordination Dependence of Hyperfine Fields of 5sp Impurities on Ni Surfaces
We present first-principles calculations of the magnetic hyperfine fields H
of 5sp impurities on the (001), (111), and (110) surfaces of Ni. We examine the
dependence of H on the coordination number by placing the impurity in the
surfaces, on top of them at the adatom positions, and in the bulk. We find a
strong coordination dependence of H, different and characteristic for each
impurity. The behavior is explained in terms of the on-site s-p hybridization
as the symmetry is reduced at the surface. Our results are in agreement with
recent experimental findings.Comment: 4 pages, 3 figure
- …