29,115 research outputs found

    Constraints on θ_(13) from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND

    Get PDF
    We present new constraints on the neutrino oscillation parameters Δm^2_(21), θ_(12), and θ_(13) from a three flavor analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49 x 10^(32) target-proton-year. Under the assumption of CPT invariance, a two-flavor analysis (θ_(13) = 0) of the KamLAND and solar data yields the best-fit values tan^2θ_(12) = 0.444^(+0.036)_(-0.030) and Δm^2_(21) = 7.50^(+0.19)_(-0.20) x 10^(-5) eV^2; a three-flavor analysis with θ13 as a free parameter yields the best-fit values tan^2θ_(12) = 0.452^(+0.035)_(-0.033), Δm^2_(21) = 7.50^(+0.19)_(-0.20) x 10^(-5) eV^2, and sin^2θ_(13) = 0.020^(+0.016)_(-0.016). This θ_(13) interval is consistent with other recent work combining the CHOOZ, atmospheric and long-baseline accelerator experiments. We also present a new global θ_(13) analysis, incorporating the CHOOZ, atmospheric, and accelerator data, which indicates sin^2θ_(13) = 0.009^(+0.013)-_(0.007). A nonzero value is suggested, but only at the 79% C.L

    Constraining the orbits of sub-stellar companions imaged over short orbital arcs

    Full text link
    Imaging a star's companion at multiple epochs over a short orbital arc provides only four of the six coordinates required for a unique orbital solution. Probability distributions of possible solutions are commonly generated by Monte Carlo (MCMC) analysis, but these are biased by priors and may not probe the full parameter space. We suggest alternative methods to characterise possible orbits, which compliment the MCMC technique. Firstly the allowed ranges of orbital elements are prior-independent, and we provide means to calculate these ranges without numerical analyses. Hence several interesting constraints (including whether a companion even can be bound, its minimum possible semi-major axis and its minimum eccentricity) may be quickly computed using our relations as soon as orbital motion is detected. We also suggest an alternative to posterior probability distributions as a means to present possible orbital elements, namely contour plots of elements as functions of line of sight coordinates. These plots are prior-independent, readily show degeneracies between elements and allow readers to extract orbital solutions themselves. This approach is particularly useful when there are other constraints on the geometry, for example if a companion's orbit is assumed to be aligned with a disc. As examples we apply our methods to several imaged sub-stellar companions including Fomalhaut b, and for the latter object we show how different origin hypotheses affect its possible orbital solutions. We also examine visual companions of A- and G-type main sequence stars in the Washington Double Star Catalogue, and show that ≳50\gtrsim50 per cent must be unbound.Comment: Accepted for publication in MNRA

    Development of a contra-rotating tidal current turbine and analysis of performance

    Get PDF
    A contra-rotating marine current turbine has a number of attractive features: nearzero reactive torque on the support structure, near-zero swirl in the wake, and high relative inter-rotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing tank demonstrated the feasibility of the concept. Power coefficients were high for such a small model and in excellent agreement with predictions, confirming the accuracy of the computational modelling procedures. Highfrequency blade loading data were obtained in the course of the experiments. These show the anticipated dynamic components for a contra-rotating machine. Flow visualization of the wake verified the lack of swirl behind the turbine. A larger machine is presently under construction for sea trials

    Design and testing of a contra-rotating tidal current turbine

    Get PDF
    A contra-rotating marine current turbine has a number of attractive features: nearzero reactive torque on the support structure, near-zero swirl in the wake, and high relative inter-rotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing tank demonstrated the feasibility of the concept. Power coefficients were high for such a small model and in excellent agreement with predictions, confirming the accuracy of the computational modelling procedures. High-frequency blade loading data were obtained in the course of the experiments. These show the anticipated dynamic components for a contra-rotating machine. Flow visualization of the wake verified the lack of swirl behind the turbine. A larger machine is presently under construction for sea trials

    X-ray photoelectron spectroscopy investigation of the mixed anion GaSb/InAs heterointerface

    Get PDF
    X-ray photoelectron spectroscopy has been used to measure levels of anion cross-incorporation and to study interface formation for the mixed anion GaSb/lnAs heterojunction. Anion cross-incorporation was measured in 20 Ã… thick GaSb layers grown on lnAs, and 20 Ã… thick InAs layers grown on GaSb for cracked and uncracked sources. It was found that significantly less anion cross-incorporation occurs in structures grown with cracked sources. Interface formation was investigated by studying Sb soaks of InAs surfaces and As soaks of GaSb surfaces as a function of cracker power and soak time. Exchange of the group V surface atoms was found to be an increasing function of both cracker power and soak time. We find that further optimization of current growth parameters may be possible by modifying the soak time used at interfaces

    Conceptual design study for a teleoperator visual system, phase 2

    Get PDF
    An analysis of the concept for the hybrid stereo-monoscopic television visual system is reported. The visual concept is described along with the following subsystems: illumination, deployment/articulation, telecommunications, visual displays, and the controls and display station

    The Chelsea Critical Care Physical Assessment Tool (CPAx): validation of an innovative new tool to measure physical morbidity in the general adult critical care population; an observational proof-of-concept pilot study.

    Get PDF
    Objective To develop a scoring system to measure physical morbidity in critical care – the Chelsea Critical Care Physical Assessment Tool (CPAx). Method The development process was iterative involving content validity indices (CVI), a focus group and an observational study of 33 patients to test construct validity against the Medical Research Council score for muscle strength, peak cough flow, Australian Therapy Outcome Measures score, Glasgow Coma Scale score, Bloomsbury sedation score, Sequential Organ Failure Assessment score, Short Form 36 (SF-36) score, days of mechanical ventilation and inter-rater reliability. Participants Trauma and general critical care patients from two London teaching hospitals. Results Users of the CPAx felt that it possessed content validity, giving a final CVI of 1.00 (P < 0.05). Construct validation data showed moderate to strong significant correlations between the CPAx score and all secondary measures, apart from the mental component of the SF-36 which demonstrated weak correlation with the CPAx score (r = 0.024, P = 0.720). Reliability testing showed internal consistency of α = 0.798 and inter-rater reliability of κ = 0.988 (95% confidence interval 0.791 to 1.000) between five raters. Conclusion This pilot work supports proof of concept of the CPAx as a measure of physical morbidity in the critical care population, and is a cogent argument for further investigation of the scoring system
    • …
    corecore