10,393 research outputs found
More beef from the Kimberleys
Beef production in the Kimberleys is an industry which has eked out a precarious existence for many years. Today it is offered an unprecedented opportunity for expansion on sound economic lines, and it is the purpose of this article to offer some suggestions as to how this may best be achieved.
[Part 1 of ongoing series of articles
More beef from the Kimberleys, part 2
Low phosphorus content and low protein content of pastures usually go hand in hand and as most dry feed is deficient in both of these important nutritional needs, it is easy to understand why our Kimberley cattle do well in the wet when ample green feed is available, but fall away rapidly in condition as the feed dries out. Increasing the protein content is essentially a long-term project, but I feel that the remedying of phosphorus deficiency is an economic possibility, which could be put into effect fairly rapidly.
*Ongoing serial, publication reviews. Original title: More beef from the Kimberleys . This has been augmented as part 2 for clarity
Cattle-working yards
The diagram accompanying this article shows a set of yards with an overall size of 50 yds. x 40 yds. through which about 300 cattle may be worked with a minimum of effort. It will be noted that corners have been eliminated wherever possible, and cattle may be worked right round the outer fences with all gates closing behind them as block gates irrespective of whether they are worked in a clockwise or anticlockwise direction
Analysis of time-correlated single photon counting data:a comparative evaluation of deterministic and probabilistic approaches
We review various methods for analysing time-resolved fluorescence data acquired using the time-correlated single photon counting method in an attempt to evaluate their benefits and limitations. We have applied these methods to both experimental and simulated data. The relative merits of using deterministic approaches, such as the commonly used iterative reconvolution method, and probabilistic approaches, such as the smoothed exponential series method, the maximum entropy method and recently proposed basis pursuit denoising (compressed sensing) method, are outlined. In particular, we show the value of using multiple methods to arrive at the most appropriate choice of model. We show that the use of probabilistic analysis methods can indicate whether a discrete component or distribution analysis provides the better representation of the data
Accurate <i>ab initio</i> ro-vibronic spectroscopy of the X<sup>2</sup>∏ CCN radical using explicitly correlated methods
Explicitly correlated CCSD(T)-F12b calculations have been carried out with systematic sequences of correlation consistent basis sets to determine accurate near-equilibrium potential energy surfaces for the X<sup>2</sup>∏ and a<sup>4</sup>Σ<sup>−</sup> electronic states of the CCN radical. After including contributions due to core correlation, scalar relativity, and higher order electron correlation effects, the latter utilizing large-scale multireference configuration interaction calculations, the resulting surfaces were employed in variational calculations of the ro-vibronic spectra. These calculations also included the use of accurate spin-orbit and dipole moment matrix elements. The resulting ro-vibronic transition energies, including the Renner-Teller sub-bands involving the bending mode, agree with the available experimental data to within 3 cm<sup>−1</sup> in all cases. Full sets of spectroscopic constants are reported using the usual second-order perturbation theory expressions. Integrated absorption intensities are given for a number of selected vibronic band origins. A computational procedure similar to that used in the determination of the potential energy functions was also utilized to predict the formation enthalpy of CCN, ΔH<sub>f</sub>(0K) = 161.7 ± 0.5 kcal/mol
First record of verticillium wilt (Verticillium longisporum) in winter oilseed rape in the UK
Verticillium longisporum is an important pathogen of oilseed rape (OSR) and vegetable brassicas in several European countries, but has not been reported previously in the UK (Karapapa et al., 1997; Steventon et al., 2002). In 2007, Verticillium wilt was suspected in UK crops of winter OSR (W-OSR) on cv. Castille in Romney Marsh, Kent and on cv. Barrel near Hereford. At these two locations, 32 and 10% of the plants, respectively, appeared to be affected, but the presence of stem canker may have masked some infections. Symptoms were first seen as the crops began to ripen (seeds green-brown to brown, Growth Stage: 6,4-6,5) and included brown and dark grey vertical bands on the stems from soil level into the branches, and premature ripening of some branches (Fig. 1).
Microsclerotia were observed on stem samples collected in the field (Fig. 2), suggesting V. longisporum as the causal agent. Cultures were prepared from field samples by immersing stem pieces in 5% sodium hypochlorite solution for one minute, washing twice in sterile distilled water and plating onto potato dextrose agar containing 25 mg/l streptomycin sulphate. Isolates from three plants per outbreak were identified morphologically as V. longisporum. Mean conidial dimensions (25 spores per isolate) were 8.80-9.65 μm (length) and 2.50-2.85 μm (width) and all isolates produced elongated microsclerotia, characters typical of V. longisporum (Karapapa et al., 1997). The identity was confirmed by PCR using species-specific primers (Steventon et al., 2002) and, as a member of the α sub-group, by direct sequencing of the amplicons from primer pairs ITS4-ITS5 and DB19-DB22 (Collins et al., 2003; 2005). Sequences for isolate 003 from Kent were deposited in GenBank (Accession Nos. HQ702376 and HQ702377). All isolates tested from 2008 and 2009 were identical with previously deposited sequences for European OSR isolates (e.g. AF363992 and AF363246 respectively). Pathogenicity was confirmed by inoculating three OSR cv. Castille seedlings per isolate using the root dip technique with 1 x 106 spores/ml (Karapapa et al., 1997) under heated glasshouse conditions at 19°C. Leaf yellowing and blackening of the leaf veins were found 26 days after inoculation (Fig. 3). Yellowing affecting the three oldest leaves increased for seven to nine days. After five weeks the final mean leaf area affected was 63-78% with no differences between isolates. No leaf yellowing occurred in the controls. After five weeks, V. longisporum was re-isolated from all the inoculated seedlings, but not from the non-inoculated controls.
In June 2008, infection of W-OSR crops in different fields on the same farms was found on cv. Es Astrid in Kent (56% incidence) and on cv. Lioness in Hereford (15% incidence). The Kent farm had been growing W-OSR alternating with winter wheat for at least 10 years whilst the Hereford farm had grown W-OSR one year in four. These short rotations of OSR may be contributing to the appearance of this disease. This study confirms the identification of V. longisporum on any host in the UK, through molecular studies and detailed spore measurements that were not reported in an earlier review (Gladders, 2009). This pathogen occurs in several European countries and, since OSR may be traded freely, following a Defra consultation, no statutory plant health action is to be taken
A terahertz polarization insensitive dual band metamaterial absorber
Metamaterial absorbers have attracted considerable attention for applications in the terahertz range. In this Letter, we report the design, fabrication, and characterization of a terahertz dual band metamaterial absorber that shows two distinct absorption peaks with high absorption. By manipulating the periodic patterned structures as well as the dielectric layer thickness of the metal–dielectric–metal structure, significantly high absorption can be obtained at specific resonance frequencies. Finite-difference time-domain modeling is used to design the structure of the absorber. The fabricated devices have been characterized using a Fourier transform IR spectrometer. The experimental results show two distinct absorption peaks at 2.7 and 5.2 THz, which are in good agreement with the simulation. The absorption magnitudes at 2.7 and 5.2 THz are 0.68 and 0.74, respectively
- …