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Abstract. We review various methods for analysing time-resolved fluorescence data acquired using the time-

correlated single photon counting (TCSPC) method in an attempt to evaluate their benefits and limitations. We 

have applied these methods to both experimental and simulated data. The relative merits of using deterministic 

approaches, such as the commonly used iterative reconvolution method, and probabilistic approaches, such as 

the smoothed exponential series method (SESM), the maximum entropy method (MEM) and recently proposed 

basis pursuit denoising (BPDN, compressed sensing) method are outlined. In particular, we show the value of 

using multiple methods to arrive at the most appropriate choice of model. We show that the use of probabilistic 

analysis methods can indicate whether a discrete component or distribution analysis provides the better 

representation of the data. 

1. Introduction 

Time-correlated single photon counting (TCSPC) is a 

powerful method for the acquisition of time-resolved 

fluorescence data. It affords exquisite signal-to-noise 

over many orders of magnitude in intensity and time 

(from tens of picoseconds to microseconds). Commercial 

data analysis programs provide the ability to analyse data 

in terms of functions consisting of sums of a limited 

number of discrete exponential decay components, while 

more advanced programs also provide lifetime 

distribution analyses in one form or another. However, 

determining the most appropriate kinetic scheme with 

which to interpret the data is non-trivial. 

The purpose of this paper is to evaluate the use of 

probabilistic analysis methods to gain an unbiased 

indication of the most appropriate model describing time-

resolved fluorescence decay data. The intention is to 

provide an objective assessment of the benefits of using 

such an approach to determine a suitable model for the 

system under study. The results provide useful insight 

into the strengths and weaknesses of the various 

approaches investigated. Although the work in this paper 

is based on the time-correlated single photon counting 

method, the outcomes are relevant to all time-resolved 

fluorescence techniques. 

The paper should also serve as a useful guide in the 

analysis of time-resolved data more generally. 

Fundamental analysis principles are outlined and 

practically demonstrated through the results that are 

presented. This should be of significant value to the 

growing time-resolved spectroscopy community, which 

is constantly striving to probe ever more complicated 

systems. Analysis of such systems can be extremely 

challenging, which can lead to misinterpretation of the 

data collected. It is hoped that the strategies outlined 

below will help to avoid such a fate. 

 

1.1. Convolution and an ill-posed problem 

It is well known that the instrument response function 

(IRF) limits the achievable temporal resolution of 

TCSPC, and other time-resolved experiments. The IRF is 

borne of the finite width of the excitation pulse, as well 

as the temporal broadening caused by each of the 

components of the detection system (photo-detector, 

monochromator, and electronics), and the duration and 

substructure of the IRF results in a perturbation to the 

measured decay that cannot be neglected, particularly on 

short time-scales. The measured decay intensity, D(t), is 

then a convolution of the IRF, R(t), and the true 

fluorescence decay, F(t); 
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 𝐷(𝑡) = ∫ 𝐹(𝑡′)𝑅(𝑡 − 𝑡′)𝑑𝑡′
𝑡

0

. (1) 

The convoluted nature of this relationship means the 

influence of the IRF cannot be removed by simply 

subtracting the IRF from the measured decay. The 

distortion of the true fluorescence decay by the IRF 

causes a serious problem for the analysis of TCSPC data; 

obtaining the true form of F(t) requires inversion of 

equation (1), which is mathematically challenging 

because the problem is ill-posed [1-3]. Simply stated, this 

means that many solutions exist that can adequately 

describe the observed decay behaviour. Under these 

conditions the presence of noise can have significant 

influence on the solution obtained. Unfortunately, direct 

deconvolution strategies are generally found to be 

inappropriate for time-resolved fluorescence 

measurements [4]. For instance, Fourier transform 

approaches suffer from the discontinuity caused by 

truncation of the decay at long times (and also by the 

almost instantaneous excitation rise) in addition to the 

presence of noise [5, 6]. Simulated-annealing has been 

shown to provide promising deconvolution results [6]; 

however, this method is inherently slow due to the 

random nature of the optimisation. 

Without a direct method to extract the true fluorescence 

decay from the measured decay data it has been necessary 

to develop strategies that can find reliable solutions to 

equation (1). 

We should also point out that whilst the vast majority 

of fluorescence decay fitting in commercial programs and 

the literature is performed in terms of fluorescence 

lifetimes, it is often more physically meaningful to deal 

with rate constants. Any analysis method should be able 

to deal with both representations. For this reason, we 

discuss the scenarios in terms of both lifetimes and rate 

constants in this paper. 

 

1.2. Iterative reconvolution (ItRe) of an assumed function 

Iterative (re)convolution is the most commonly used 

analysis method for TCSPC measurements because it is a 

robust technique that can quickly obtain solutions and, 

historically, it has been seen to be the most effective way 

to obtain reliable and accurate results [4, 5]. There are a 

number of commercial and open-source software 

packages that use iterative reconvolution, including 

FAST (Edinburgh Instruments Ltd.), FluorFit 

(PicoQuant), and Decay Fit (FluorTools, 

www.fluortools.com). 

During fitting, the true fluorescence decay (which has 

been normalised here) is estimated by a lifetime (or rate 

constant) distribution; 

 
𝐹(𝑡)

𝐹0
= 𝐹𝑁(𝑡) = ∫ 𝑝(𝜏)𝑒−

𝑡
𝜏

∞

0

𝑑𝑡, (2a) 

 𝐹𝑁(𝑡) = ∫ 𝑝(𝑘)𝑒−𝑘𝑡
∞

0

𝑑𝑡, (2b) 

where  is the lifetime (k is the rate constant) and p() 
 (p(k)) is the corresponding probability amplitude. For 

multi-exponential analysis – which is almost invariably 

used – p()  (p(k)) is represented by a weighted sum of n 

discrete delta functions positioned at lifetimes j (or rate 

constants kj); 

 𝑝(𝜏) = ∑ 𝑎𝑗𝛿(𝜏 − 𝜏𝑗)

𝑛

𝑗=1

, (3a) 

 𝑝(𝑘) = ∑ 𝑎𝑗𝛿(𝑘 − 𝑘𝑗)

𝑛

𝑗=1

, (3b) 

which gives, 

 𝐹𝑁(𝑡) = ∑ 𝑎𝑗𝑒
−

𝑡
𝜏𝑗

𝑛

𝑗=1

, (4a) 

 𝐹𝑁(𝑡) = ∑ 𝑎𝑗𝑒−𝑘𝑗𝑡

𝑛

𝑗=1

, (4b) 

where aj is the contribution of the jth lifetime (rate 

constant) under the normalisation condition; 

 ∑ 𝑎𝑗 = 1

𝑛

𝑗=1

. (5) 

The resulting assumed decay function must be 

convolved with a measured (or estimated) IRF to allow 

comparison with the experimentally measured decay. 

Fitted parameters, aj and j (or kj), are iteratively 

improved until an adequate representation of the data is 

achieved. 

As a point of clarification, it should be noted that all of 

the methods described in this work rely on iterative 

improvement of the fit of a convolved function; however, 

the term iterative reconvolution will be reserved for the 

deterministic type of analysis described in this section 

(i.e. the case where a pre-determined function is fitted to 

the experimental decay by the process of iterative 

reconvolution). 

A significant limitation of the iterative reconvolution 

method is that it requires the assumption of a model 

before fitting (which is then validated afterwards). Ideally 

the system under study would comply with an intuitively 

obvious choice of model but, unfortunately, there is often 

little or no knowledge that can aid in proposing the 

definitively appropriate model. Without prior knowledge, 

the model is usually accepted or rejected based on its 

statistical validity after fitting using the null hypothesis 

[5]. Only if the evaluated model meets predetermined 
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criteria (e.g. a goodness-of-fit measure reaching a 

threshold value; see below) can it be accepted as a 

credible description of the system. It is important to 

realize that this does not necessarily mean that it is the 

correct model for the system; there may be a number of 

different models that satisfy the chosen criteria. In 

practice, the simplest possible model (i.e. a single-

exponential decay function) is usually tested, before 

progressively more complexity is added until an 

acceptable fit has been achieved. Once an adequate fit has 

been established, there is generally no justification for 

assuming that a more complicated model would be 

beneficial or, indeed, appropriate. Some of the methods 

that can be used to determine the adequacy of a fit are 

given below. 

 

1.2.1. Evaluating quality of fit. The goodness-of-fit is 

generally determined by least-squares analysis using the 

chi-squared statistic, 𝜒2; 

 

𝜒2 = ∑ [
𝑂(𝑖) − 𝐸(𝑖)

𝜎(𝑖)
]

2𝑁𝑐

𝑖=1

=  ∑ [
𝐷𝑜𝑏𝑠(𝑖) − 𝐷𝑐𝑎𝑙𝑐(𝑖)

√𝐷𝑜𝑏𝑠(𝑖)
 ]

2𝑁𝑐

𝑖=1

, 

(6) 

where i represents the channel number; Nc is the total 

number of channels in the fit; O is the observed data (the 

measured decay, Dobs); E is the estimate of the data based 

on the chosen decay function (the calculated decay after 

convolution with the IRF, Dcalc), and  is the standard (or 

expected) deviation of the data. In Poisson statistics, 

which is typically assumed for fluorescence decay data 

collected by TCSPC, the variance of the data, 2, is equal 

to Dobs. The value of −2 is known as the data weight, and 

the residuals of the fit, r, are properly weighted by −1, 

that is; 

 𝑟(𝑖) =  
𝐷𝑜𝑏𝑠(𝑖) − 𝐷𝑐𝑎𝑙𝑐(𝑖)

√𝐷𝑜𝑏𝑠(𝑖)
 . (7) 

To account for the number of fitting parameters in the 

model, np, the 𝜒2 value is typically normalised by the 

degrees of freedom in the fit, ν = Nc − np – 1, to produce 

the reduced chi-squared statistic, 𝜒𝑅
2; 

 𝜒𝑅
2 =

𝜒2

𝜈
=  

𝜒2

𝑁𝑐 − 𝑛𝑝 − 1
. (8) 

Roughly speaking the 𝜒𝑅
2 value obtained for a fit can be 

interpreted in the following way: 𝜒𝑅
2 ≫ 1 describes a poor 

fit; 𝜒𝑅
2 > 1 suggests that the model does not fully account 

for the observed behaviour; 𝜒𝑅
2 ≅ 1 indicates that, within 

the expected variance, the observed fluorescence decay 

behaviour has been adequately matched by the model; 

finally, 𝜒𝑅
2 < 1 means that the data has been over-fitted, 

which can occur when there are too many variable 

parameters in the model, the error variance has been 

overestimated, or the fitting range is inappropriate. It 

should be noted that determining whether or not 𝜒𝑅
2 is 

close enough to unity is somewhat subjective and is 

dependent on the quality of data collected (which is 

influenced by IRF structure, photon yield, background 

level etc.). For most systems, 𝜒𝑅
2 < 1.2 is typically a 

reasonable indicator of an acceptable fit, but this should 

be checked against other criteria. 

One of the most important (and challenging) aspects of 

the analysis of time-resolved data is the assessment of the 

residuals of the fit. While it is a helpful indicator of the 

overall quality of the fit, the chi-squared value only 

informs the experimentalist about the magnitude of the 

residuals and tells nothing about their distribution. The 

presence of structure within the residuals (i.e. a non-

random distribution) represents an inability of the fitted 

model to accurately describe the data. 

Birch and Imhof have provided a useful summary of 

the benefits of visually assessing properly weighted 

residuals [7]: it is possible to see where a fitted function 

does not match the data; the standardised weighting 

allows direct comparison between data sets of varying 

precision (signal-to-noise ratio); residuals are weighted 

by the standard deviation of the associated data and thus 

in a statistically significant way; finally, there is an 

intuitive relationship between the residuals and the 

associated chi-squared value. 

Structure within the residuals can be subtle and difficult 

to spot (especially on short timescales). To aid in the 

assessment of the randomness of residuals it is possible 

to calculate their autocorrelation function (ACF) [8]; 

 ACF(𝑖) = ∑
(𝑟𝑖 − 〈𝑟〉)(𝑟𝑚+𝑖 − 〈𝑟〉)

∑ (𝑟𝑖 − 〈𝑟〉)2𝑁𝑐
𝑚=1

𝑁𝑐−𝑖

𝑚=1

, (9) 

where 〈𝑟〉 is the mean residual value. The ACF can 

accentuate structure that is obscured within the weighted 

residuals. For instance, if there is underlying oscillatory 

behaviour within the residuals (perhaps due to electrical 

interference in the detector system) then this will be 

evident within the ACF. 

Another way to investigate structure within the 

residuals is to calculate the Durbin-Watson parameter, 

DW; 

 𝐷𝑊 =
∑ (𝑟𝑖 − 𝑟𝑖−1)2𝑁𝑐

𝑖=2

∑ 𝑟𝑖
2𝑁𝑐

𝑖=1

. (10) 

The Durbin–Watson parameter can range between 0 

and 4 and is compared to lower (DWL,) and upper 

(DWU,) critical values, which depend on the significance 

level, , of the test. Deviation from the ideal value of 2 

indicates the presence of structure within the residuals. 

For instance, the DW parameter rejects the null 

hypothesis that residuals are not autocorrelated at the 
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95% significance level if DW < 1.75 (for a two-

exponential decay) [9, 10]. Note that an “acceptable” DW 

parameter (DW > 1.75, in this case) does not guarantee 

the residuals are uncorrelated (it only means that the 

Durbin–Watson test does not provide statistical evidence 

that they are autocorrelated (DW < DWL,) or 

anticorrelated (DW > DWU,) at the given significance 

level). 

It is worth pointing out that the autocorrelation function 

and Durbin–Watson parameter are based on the same 

information as the weighted residuals analysis [7]. In 

other words, they present the same information in 

different ways, which often means that they are redundant 

in practical situations. 

The Runs Test can be used to investigate whether or not 

the residuals are mutually independent (i.e. randomly 

distributed). It complements chi-squared analysis because 

it considers the sign of the error rather than the scale of 

the error. Here, a run is defined as a string of consecutive 

positive or negative residual values, with the next run 

beginning at a residual value of opposite sign. The test 

statistic, Z, is calculated as [11] 

 𝑍 =
𝑅 − 𝑅𝑒

𝜎𝑅
, (11) 

where R is the observed number of runs, and Re is the 

expected number of runs, calculated as 

 𝑅𝑒 =
2𝑛1𝑛2

𝑛1 + 𝑛2
+  1, (12) 

where n1 and n2 are the number of positive and negative 

residual values and R is the standard deviation of the 

number of runs, calculated via 

 𝜎𝑅
2 =

2𝑛1𝑛2(2𝑛1𝑛2 − 𝑛1 − 𝑛2)

(𝑛1 + 𝑛2)2(𝑛1 + 𝑛2 − 1)
. (13) 

For a random sequence of residuals R should equal Re 

and so, in this ideal case, Z diminishes to 0. The 

randomness of the residuals is rejected at the 95% 

significance level if |𝑍| > 1.96 [10]. Note that, similar to 

the Durbin-Watson test, |𝑍| < 1.96 does not guarantee the 

residuals are random (it only means the Runs Test cannot 

reject randomness at the given significance level, in this 

case  = 0.05). 

 

1.2.2. Global analysis. The reliability and robustness of a 

fit can be improved with the use of global analysis [1, 12, 

13]. This approach requires simultaneous fitting of 

multiple decays that differ by some known parameter; 

typically the excitation or, more commonly, the emission 

wavelength is altered. The fluorescence decay is then 

described by: 

 

𝐹𝑁(𝑡, 𝜆) = ∑ 𝑎𝑗(𝜆)𝑒
−

𝑡
𝜏𝑗(𝜆)

𝑛

𝑗=1

≅ ∑ 𝑎𝑗(𝜆)𝑒
−

𝑡
𝜏𝑗

𝑛

𝑗=1

, 

(14a) 

 

𝐹𝑁(𝑡, 𝜆) = ∑ 𝑎𝑗(𝜆)𝑒−𝑘𝑗(𝜆)𝑡

𝑛

𝑗=1

≅ ∑ 𝑎𝑗(𝜆)𝑒−𝑘𝑗𝑡

𝑛

𝑗=1

, 

(14b) 

where aj() and j() (kj()) are wavelength-dependent 

amplitudes and lifetimes (rate constants). Generally the 

lifetimes (rate constants) are assumed to be wavelength-

independent (since, in condensed phase, emission from 

the same excited state is observed, regardless of 

excitation or emission wavelength) and so can be 

constrained to have common (global) values when 

analysing multiple decays. This reduces the overall 

number of adjustable parameters in the analysis and 

militates against the problem of correlation between 

amplitudes and lifetimes. 

Despite improving confidence in the final result of 

fitting, global analysis does not solve the fundamental 

problem of having to choose a model before fitting. For 

this reason global analysis will not be discussed further in 

this work, but for a comprehensive review and further 

reading see van Stokkum et al. and references therein 

[14]. 

 

1.3. Probabilistic analysis 

From the above assessment it should be evident that 

iterative reconvolution cannot definitively provide the 

correct model for the system under study. Additionally, if 

a number of plausible solutions exist, it is not always clear 

which model is physically most appropriate. Therefore, to 

gain insight into the underlying dynamics of the decay 

process, it may be useful to use a probabilistic (or 

distributive) approach that makes no initial assumptions 

about the physical model of the system. In this case p() 
 (p(k)) in equation (2) is not limited to any particular 

functional form. For this strategy it is more convenient to 

use matrix notation because of the large number of 

variables present. The true fluorescence decay can then 

be written in the following form: 

 𝑭𝑵 = 𝑴𝒂, (15) 

where FN is the fluorescence decay binned in to m 

channels, a is the vector (length n) of a-factor amplitudes, 

𝒂 = [𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛], and M, the decay matrix (of size 

m × n), is defined as: 

 𝑴𝒊𝒋 = 𝑒
−

𝑡𝑖
𝜏𝑗 , (16a) 
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 𝑴𝒊𝒋 = 𝑒−𝑘𝑗𝑡𝑖 , (16b) 

where ti is the ith channel (time point) and j (kj) is the jth 

lifetime (rate constant) of a pre-defined set (length n), 

which have corresponding a-factor amplitudes (aj). 

Typically, the chosen set of lifetimes (rate constants) is 

logarithmically spaced to maximize the range of lifetimes 

(rate constants) while minimising the number of 

necessary components. Logarithmic spacing also 

facilitates the conversion (and thus comparison) between 

distributions of lifetimes and rate constants. 

One of the challenges of using distributive methods for 

ill-posed problems is the vast number of degrees of 

freedom; there are many possible solutions and it is 

difficult for a standard least-squares analysis to optimize 

to a reliable minimum because of inherent instabilities. It 

is therefore necessary to regularize the problem by 

applying some additional constraint function, C(a). The 

weighting of the constraint function is controlled by a 

regularisation parameter, , and the general mathematical 

description of the problem becomes of the form [3]; 

 �̇� = arg min
𝑎

[
1

2
‖𝑭𝑵 − 𝑴𝒂‖2

2 + 𝛾𝐶(𝒂)], (17) 

where ȧ is the argument of the minimum (the set of values 

of a that minimises the function) and ‖𝑭𝑵 − 𝑴𝒂‖2
2 is the 

square of the Euclidean (l2) norm of the difference 

between the decay, FN, and the fit, Ma. Note that terms 

may contain some weighting factor that is not explicitly 

shown in the expression above. 

 

1.3.1. Maximum entropy method (MEM). One approach 

to probabilistic analysis is the maximum entropy method 

(MEM), which has been used in a number of studies to 

analyse time-resolved fluorescence data [15-19]. In this 

case the constraint function is calculated as the Shannon-

Jaynes entropy [15, 17]; 

 𝐶𝑀𝐸𝑀(𝒂) = − ∑ 𝑎𝑗 log (
𝑎𝑗

𝑏𝑗
)

𝑛

𝑗=1

,  (18) 

where the set of values 𝒃 = [𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛] represent a 

default model for the system; however, as there is no 

default model that describes the dynamics of fluorescence 

emission, bj values are generally set to a constant value. 

Using constant bj favours equal contribution from all 

lifetimes and means that the introduction of structure into 

the distribution is discouraged [3]; in other words, only 

necessary components should be present in the solution. 

Note that (for the formalism used here) the regularisation 

parameter is defined to be negative ( < 0) for the MEM; 

this reflects the fact that entropy should be maximised 

during the optimisation. Additionally, given that log(x) is 

only defined for x > 0, the MEM (as implemented here) 

inherently restricts probability amplitudes to positive 

values. It is worth pointing out that, while it is often 

physically justified to use strictly positive amplitudes, 

there are situations where negative amplitudes might be 

expected (such as in instances where solvent relaxation is 

required before fluorescence can occur, or in the case of 

excited state complex formation). Although not discussed 

further in this work, it should be noted that strategies have 

been developed to extend the MEM to include negative 

amplitudes [20-22]. 

 

1.3.2. Smoothed exponential series method (SESM). 

Siemiarczuk et al. [17] found little difference between the 

MEM and the exponential series method (ESM) [23, 24], 

which completely drops the constraint function (i.e. CESM 

= 0), except for in the case of a single-exponential decay 

(where iterative reconvolution would be the preferred 

method anyway). An initial attempt to replicate the ESM 

produced a discontinuous distribution of probability 

amplitudes. This did not seem physically realistic and so 

it was concluded that a smoothness constraint, CSESM, 

should be applied. Phillips [25] showed that using the 

square of the second derivative was an effective strategy 

to constrain problems of this kind (an example of 

Tikhonov-Phillips regularisation, 𝐶𝑇𝑃(𝒂) = ‖𝜦𝒂‖2
2, with 

the Tikhonov matrix, , chosen to be the second 

derivative operator). The strategy used in this work 

follows the simplified implementation of Phillips 

smoothing used by Liu and Ware [26]; namely, the 

smoothness of the distribution was estimated by summing 

the square of the second difference between a-factor 

amplitudes; 

 
𝐶𝑆𝐸𝑆𝑀(𝒂) = ∑[(𝑎𝑗+2 − 𝑎𝑗+1)

𝑛−2

𝑗=1

− (𝑎𝑗+1 − 𝑎𝑗)]
2

. 

(19) 

It is worth highlighting that, depending on the system 

being investigated, it may be beneficial to use other 

measures of smoothness for regularization. For example, 

a different order of derivative or, indeed, a combination 

of derivatives may provide a more appropriate constraint 

on the recovered amplitudes. Ideally, the chosen function 

should be directed by knowledge of the system since it 

will alter the efficacy of the regularization [27]. Here, the 

choice was primarily motivated by ease of computation. 

 

1.3.3. Basis pursuit denoising (BPDN). Groma et al. [3] 

recently introduced an elegant approach to analysing 

time-resolved fluorescence data by using the l1-norm of 

the vector of the a-factors as the constraint function; 

 𝐶𝐵𝑃𝐷𝑁(𝒂) = ‖𝒂‖1 = ∑ |𝑎𝑗|

𝑛

𝑗=1

. (20) 

In this case the formulation of the minimisation 

problem – equation (17) – becomes that of basis pursuit 

denoising (BPDN) [28, 29]. The analysis process for this 
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method can be summarised in the following way: find the 

simplest solution (by minimising CBPDN), which can 

account for the experimental results (by minimising the 

least-squares error, 𝜒𝑅
2). This strategy follows the ideas of 

compressed sensing [30-32]; that it is possible to 

reconstruct the majority of a sparse (or compressible) 

signal by only using the most important elements. 

1.3.4. Other analysis methods. This work only considers 

a sample of all possible analysis approaches and so it is 

perhaps useful to mention some other strategies that are 

available. For instance, lasso (least absolute shrinkage 

and selection operator) [33], which is closely related to 

BPDN, and its extension, elastic net [34], have previously 

been used to recover fluorescence lifetime distributions 

[35, 36]. The elastic net approach aims to improve lasso 

by combining it with Tikhonov-Phillips regularisation to 

achieve better performance with high-dimensional data 

with a small sample size, allow simultaneous selection of 

strongly correlated variables, and increase prediction 

accuracy [34]. 

The maximum likelihood method has also been 

successfully applied to fluorescence lifetime data [37, 

38], and potentially performs better than least-squares 

analysis (as described in §1.2.1) with low count data by 

more accurately describing Poisson noise [37]. 

 

1.4. Content of paper 

The use of probabilistic methods in the context of 

fluorescence decay analysis is not a new concept; 

however, the value of this approach is not reflected within 

the literature, which is heavily dominated by iterative 

reconvolution analysis. There are a number of possible 

reasons for this. Firstly, iterative reconvolution is fast, 

versatile, reliable, and robust; such desirable attributes are 

extremely appealing for an analysis method. Secondly, 

commercial software packages almost exclusively use 

iterative reconvolution (mainly due to the former point); 

this has led to a familiarity, within the community, with 

this method and perhaps an inhibition of the use of less 

well-known methods. Thirdly, the results obtained from 

iterative reconvolution are intuitive; there is a direct link 

between fit parameters and model. The use of a well-

defined model also means that it is (theoretically) easy to 

determine whether or not it is physically realistic. Finally, 

the computational power (speed) required for 

probabilistic methods has perhaps been lacking for 

“average” users until recently. 

There is no doubt that iterative reconvolution is an 

effective analysis strategy for fluorescence decay data; 

however, as outlined above (and demonstrated below), it 

can suffer from deficiencies. Here we show that 

probabilistic analysis methods can complement iterative 

reconvolution analysis and help to overcome some of its 

limitations. In particular, there is focus on the benefit of 

gaining an unbiased assessment of the underlying decay 

dynamics. Since many may be unfamiliar with the 

probabilistic methods, a number of different approaches 

are evaluated with both simulated and experimental data. 

The results provide insight into the relative merits of the 

different methods and, at the same time, shed some light 

on the fluorescence behaviour of a complicated 

biophysical system; namely, 2-aminopurine (2AP) 

incorporated into nucleic acids. 

The fluorescent base-analogue, 2AP, has become a 

valuable asset in the study of nucleic acids due to its 

highly desirable structural and photophysical properties; 

however, there still remains a significant shortfall in the 

understanding of the precise causes of its complex 

fluorescence behaviour within these systems. Of 

particular concern is the inability to provide a definitive 

physical model that can fully explain the multi-

exponential fluorescence decay observed from time 

resolved fluorescence measurements of 2AP incorporated 

in oligonucleotides. Typically four-exponential terms are 

required to adequately fit the decays measured within the 

picosecond-nanosecond time range, which contrasts 

greatly with the single-exponential decay of free 2AP in 

solution. These four components are generally attributed 

to distinct conformational states in which 2AP 

experiences varying degrees of intermolecular 

interactions. Charge transfer between stacked bases has 

been implicated as the cause of the shortest lifetime (1, < 

100 ps) observed. The longest lifetime (4, ~9 ns) is 

similar to that of free 2AP and is commonly accredited to 

a conformation where the 2AP moiety does not 

experience significant inter-base interaction. Such a state 

is thought to be accessible in DNA through base-flipping. 

The assignment of the two intermediate lifetimes (~0.5 ns 

and ~2 ns) has been more controversial, however, and 

there is still a lack of knowledge regarding their precise 

origin. It is possible that they are due to intermediate 

conformations between fully stacked and open forms, but 

alternative explanations, such as the existence of dark 

(non-fluorescent) states, have also been proposed. Indeed, 

rather than discrete components, a physically plausible 

explanation of these intermediate lifetimes is that they 

are, in fact, due to a broad distribution of decays that 

correspond to a whole range of conformations between 

stacked and unstacked extremes [6]. 

Based on redox potentials guanine (G) is predicted to 

efficiently quench excited-state 2AP; this behaviour is 

manifest in the significant amplitude of the short lifetime 

component of the fluorescence decay of 2AP when it is 

proximal to guanine within nucleic acids and in the 

dinucleotide 2AP-G. In contrast, inosine (I) is expected to 

be virtually redox-inactive with excited-state 2AP; 

however, a short lifetime component of 30 ps has been 

reported for the 2AP-I dinucleotide [39]. 

Dinucleotides offer a simple model of nucleic acids and 

have the significant benefit of limiting interactions to a 

single neighbouring base. In this work, the fluorescence 

decay profiles of 2AP-containing dinucleotides, 2AP-G 
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and 2AP-I, have been investigated to address the 

following questions. Is there evidence that the 

intermediate lifetimes are due to a broad distribution of 

states? Is there definitive evidence of the presence of the 

short lifetime component (implying charge transfer) 

when only inosine neighbours 2AP? 

 

2. Experimental / Methods 

2.1. Experimental and simulated decays 

Simulated decays were created by convolution of a 

known decay function with an experimental IRF 

(Supplementary Information, figure S1). The same IRF 

was used during fitting of these decays. Poisson noise was 

added after convolution to avoid imposing IRF structure 

into the noise. The number of counts in the peak channel 

was typically set to around 10,000 to match the 

experimental data (see below). A summary of the 

simulated decays is given in table 1. 

One of the simulated decays was based on a  

distribution of lifetimes to test the ability of the analysis 

techniques to handle non-exponential decays. In this case 

the probability for lifetime  (decay constant k) is given 

by; 

 𝑝(𝜏) =
𝛽𝜙

Γ(𝜙)
(

1

𝜏
)

𝜙+1

𝑒−
𝛽
𝜏 , (21a) 

 𝑝(𝑘) =
𝛽𝜙

Γ(𝜙)
𝑘𝜙−1𝑒−𝛽𝑘, (21b) 

where  and  are shape and scale parameters, 

respectively, and Γ(𝑥) is the Gamma function. An 

analytical summary of the properties of the  distribution 

is given by Fogarty et al. [6]. Of relevance to the present 

study is the fact that the decay function when using the  

distribution is relatively simple and that the distribution 

of lifetimes (rate constants) has a well-defined mode, 

 𝜏𝑗
∗ =  

𝛽𝑗

(𝜙𝑗 + 1)
, (22a) 

 𝑘𝑗
∗ =  

𝜙𝑗 − 1

𝛽𝑗
, (22b) 

and mean, 

 〈𝜏〉𝑗 =
𝛽𝑗

𝜙𝑗 − 1
, (23a) 

 〈𝑘〉𝑗 =
𝜙𝑗

𝛽𝑗
, (23b) 

which correspond to the most probable lifetime (22a) or 

rate constant (22b) and the average lifetime (23a) or rate 

constant (23b), respectively. 

It is worth pointing out that the Gamma distribution 

described above is equivalent to the ‘Becquerel function’ 

introduced by Berberan-Santos and coworkers [40] with 

appropriate substitution ( = 0/c and  = 1/c). An 

important outcome from this previous work is the ability 

of the distribution-based decay function to describe 

complex photophysical systems, possibly in a more 

physically realistic way than would be feasible with a 

conventional multi-exponential analysis. 

 

2.1.1. Time-correlated single photon counting (TCSPC) 

experiments. TCSPC was used to measure the 

fluorescence decay profiles of 2AP-G and 2AP-I. 

Samples were measured in fused silica cells (Starna) 

which had a 1 cm path length. Fluorescence decay curves 

were recorded using an Edinburgh Instruments 

spectrometer (FL920) equipped with TCC900 photon 

counting electronics. The excitation source was a 

tuneable, mode-locked Ti:Sapphire laser system 

(Coherent MIRA Ti:Sapphire laser pumped by a 

Coherent 10 W Verdi CW laser), producing 

approximately 200 fs pulses at a repetition rate of 

Table 1. Decay functions and parameters used for simulated data. 

Decay Type Code Decay Function Parameters 

Single-exponential 1 𝐹𝑁 = 𝑎𝑗𝑒
−

𝑡
𝜏𝑗 

j aj j/ns 

1 1.00 5.00 

Four-exponential 4 𝐹𝑁 = ∑ 𝑎𝑗𝑒
−

𝑡
𝜏𝑗

4

𝑗=1

 

j aj j/ns 

1 0.08 0.06 

2 0.32 0.67 

3 0.41 3.03 

4 0.19 11.11 

Gamma distribution 

(Gamma1) 
1 𝐹𝑁 =

𝑎𝑗

(1 + 𝑡/𝛽𝑗)
𝜙𝑗

 j aj j/ns j 

1 1.00 100 21.0 
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76 MHz. A pulse picker (Coherent 9200) was used to 

reduce the pulse repetition rate to 4.75 MHz. A harmonic 

generator (Coherent 5-050) was used to triple the 

frequency of the source light. Fluorescence emission was 

detected orthogonal to the excitation beam through a 

polariser set at the magic angle (54.7°) with respect to the 

vertically polarised excitation. A band-pass of 18 nm was 

used in the emission monochromator and photons were 

detected using a cooled microchannel plate detector 

(Hamamatsu R3809 series). All experiments were 

performed at an excitation wavelength of 305 nm. A 320 

nm long pass filter Schott Glass (Newport) was used to 

block scattered light during fluorescence decay 

measurements. Fluorescence decay curves were recorded 

on a time scale of 50 ns, binned into 4096 channels, to a 

total of 10,000 counts in the peak channel. Decays were 

measured at an emission wavelength of 380 nm. The 

instrument response function was recorded using 

scattered light from Ludox solution at 305 nm. All 

measurements were made at room temperature (20°C). 

2AP-containing dinucleotides were purchased from 

ATDBio Ltd. Samples were dissolved in Tris buffer 

(containing 0.02 M Tris-HCl pH 7.5 and 0.1 M NaCl) at a 

concentration of approximately 10 M. 

 

2.1.2. Decay fitting. All fits were performed on a standard 

PC using in-house scripts written for MATLAB (R2015a, 

The MathWorks, Inc., Natick, Massachusetts, United 

States of America.). The salient features of each analysis 

technique will be addressed below. 

During fitting the background level was fixed to a 

predetermined value based on the data before the IRF rise. 

The fitting range was generally defined to start from the 

peak channel of the IRF and end at the channel of the 

fluorescence decay that was either around 10 times higher 

than the background level or equivalent to 0.1% of the 

counts in the peak channel, whichever was greater. 

Fitting strategies for the iterative reconvolution 

analysis used in this work were partly inspired by Decay 

Fit (FluorTools, www.fluortools.com). The use of in-

house scripts allowed the inclusion of non-exponential 

decay models, such as the Gamma distribution described 

above. 

For the smoothed exponential series method (SESM) 

and the maximum entropy method (MEM) a total of 201 

fixed lifetimes, logarithmically spaced between 0.01 ns 

and 100 ns, were used during optimisation. The a-factors 

were restricted to values between 0 and 1. Since its 

associated constraint function is only defined for positive, 

non-zero a-factors, the lower limit for these in the MEM 

analyses was set to 10−10. In attempting to avoid local 

minima, five different starting points were used; four 

homogeneous distributions where all a-factors were 

initially set to the same constant (1/n (where n = number 

of a-factors), 0, 0.5, or 1) and one distribution where a-

factors were initially set to randomly generated values. To 

prevent fitting noise, a-factors were initially set (but not 

fixed) to their lower limit if the corresponding lifetime 

was on the same order-of-magnitude as the channel width 

(0.0122 ns). The optimisation which gave the best 

minimisation out of the five trials was further optimised 

to provide the fit model. The regularisation parameter, , 
was set to a value of 0.1 for the SESM and −10−3 for the 

MEM. These values were found (by trial-and-error) to be 

a good trade-off between improving the smoothness 

(continuity) of the distribution while maintaining a 

reasonable resolution in the lifetime dimension, which 

allowed discrete lifetimes to be recovered. 

The SparseLab toolbox [41] from Stanford was used 

for optimisation during basis pursuit denoising (BPDN, 

compressed sensing) analysis. Groma et al. investigated 

a number of different minimisation algorithms for BPDN 

but found that the one used by SparseLab (primal-dual 

log-barrier algorithm [29]) was best suited for fitting 

fluorescence decays [3]. The regularisation parameter, , 
was set to a value of 10−3 for BPDN analysis. This value 

was found to give a good balance between finding a 

sparse solution while avoiding oversimplification of the 

underlying dynamics. A total of 601 fixed lifetimes, 

logarithmically spaced between 0.01 ns and 100 ns, were 

used during the optimisation. 

 

2.1.3. Instrument response function shift. For iterative 

reconvolution (ItRe) analysis, the temporal shift between 

the IRF and measured decay was optimised as an 

additional parameter during the fitting process. In 

contrast, the shift was fixed during optimisation of the 

amplitudes of the SESM, the MEM, and BPDN analysis 

methods. This was done partly to circumvent the need to 

continually convolute the large decay matrix with a 

shifting IRF. It also avoided the potential issue of an 

erroneously large shift being compensated by short 

lifetimes on the order of the channel width. An iterative 

approach was therefore taken to ensure the best shift was 

obtained during fitting with the probabilistic methods. 

After optimising the amplitudes with a fixed shift, the 

shift was optimised with fixed amplitudes. This process 

was repeated until there was an insignificant change in 

the quality of fit. The final temporal shift was generally 

found to agree within a fraction of a channel for all 

methods using this approach. For the simulated data, all 

methods typically gave shift values within 1/20th of a 

channel from the expected shift value of zero. For the 

experimental data, the maximum discrepancy between 

methods was around 1/3rd of a channel. 

The iterative approach to the shift optimisation was 

somewhat unavoidable for the BPDN analysis due to the 

use of the SparseLab toolbox (though the open-source 

nature of this toolbox could allow future development to 

resolve this issue). Although the approach was perhaps 

not ideal, the optimisation of the temporal shift was found 

to be especially important for BPDN analysis. Early 
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simulations without such an optimisation (not shown) 

often showed the presence of erroneous negative 

amplitudes at short lifetimes (presumably compensating 

for the poorly characterised shift parameter). 

In the interest of open access, the code that has been 

written to perform the analysis described in this paper is 

available to download from a data share repository (see 

details in the Acknowledgements). Note that the BPDN 

analysis requires additional files from the SparseLab 

toolbox which will not be included here but can be freely 

accessed elsewhere [41]. 

 

3. Results 

Comparison of the fitting methods is most easily 

achieved by visual inspection. For each system, 

probability amplitudes, normalized by their mode, are 

plotted against their corresponding lifetime on a 

logarithmic abscissa; an expanded view on a linear 

abscissa is also shown. Discrete exponentials are 

represented as circular markers (joined by dotted lines 

that are physically meaningless, but are presented to 

guide the eye), while distributions are shown as 

continuous curves with solid markers. 

The peaks in the distributions of the SESM and the 

MEM analyses were characterised by fitting Gaussian 

functions to obtain a-factors (defined by peak area) and 

full-width at half-maximum (FWHM) for each decay 

component; this required transformation of the 

probability amplitudes to account for the use of 

logarithmically spaced lifetimes [17]. In practice, 

recovered amplitudes were divided by their associated 

lifetime to compensate for fitting linearly spaced 

Gaussian distribution functions to logarithmically spaced 

peak amplitudes. (Note that all plots show untransformed 

a-factor amplitudes that have been normalized and not the 

Gaussian fits.) The FWHM value reflects the spread of 

lifetimes that accounts for the decay component. Note 

that FWHM values are not given in the case of the BPDN 

analysis because, typically, only a single value 

contributed to the decay component. On occasion the 

peaks in the BPDN analysis were composed of two (or 

three) neighbouring components. In this case the 

amplitude-weighted lifetime, 〈𝜏〉 = ∑ 𝑎𝑗𝜏𝑗
𝑛
𝑗 , of the 

contributing components and the sum of their a-factors is 

reported as the associated lifetime and “area” (a-factor), 

respectively. The amplitude-weighted lifetime of the 

overall decay is proportional to the integrated area under 

the associated decay curve and so is provided as a simple 

measure of the character of the calculated decay model. 

Due to the diversity of the different analytical methods 

used during the study, it was necessary to devise a 

standard measure of the quality of fit. As the degrees of 

freedom in the probabilistic analysis methods was 

sometimes ambiguous (for example, in the case of the 

BPDN analysis a total of 601 amplitudes could vary; 

however, the final number of parameters that contributed 

significantly to the fit was typically less than four and, in 

addition, the parameters were not fully independent of 

each other), the 𝜒2 value is reported in addition to 𝜒𝑅
2. The 

number of fitted channels, Nc, is provided in the table 

captions as a marker of the “ideal” 𝜒2 value for the fit. 

It should be assumed that, unless specifically stated, all 

the fits reported were of adequate quality to be considered 

a fair representation of the data. For reference, all fits and 

associated data (e.g. residuals and fitting parameters) can 

Figure 1. Comparison of the results of fitting a simulated single-exponential decay (the parameters of which are shown in the 

top panel). Left: Logarithmic abscissa. Right: Linear abscissa between 4 ns and 6 ns. 
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be found in the summary files supplied in the 

Supplementary Information. 

 

3.1. Simulated decays 

3.1.1. Single-exponential function. Figure 1 shows a 

visual representation of the fits obtained for the simulated 

single-exponential decay (table 1) and table 2 shows the 

associated fitted parameters. This example represents the 

simplest possible fluorescence decay system; the decay is 

defined by a single lifetime, 5 ns, that is considerably 

longer than the IRF width (~100 ps) but only a fraction of 

the time range of the measurement (~50 ns). In addition, 

only Poisson noise is present in the simulated decay and 

there is also no need to compensate for temporal shift in 

the IRF position. If an analysis approach is to have any 

standing then it must be able to accurately describe this 

system. 

Encouragingly, the results show that all methods were 

successful when analysing the simulated single-

exponential decay. All methods show a single component 

at a lifetime close to the simulated value of 5 ns. 

Distributive methods have negligible probability 

amplitudes at other lifetime values. The fitted lifetime has 

less than 1% deviation from the simulated value and 𝜒2 

values are generally consistent between all methods 

suggesting similar qualities of fit. 

The SESM and MEM distribution fits both give fairly 

narrow peaks. Ideally the distributive methods would 

give a single point but this is unreasonable to expect, 

given the presence of noise and limitations of the 

optimisation. Consistent with previous observations [17], 

the MEM performs slightly better than the SESM in terms 

of peak width. Note that the peaks could have been 

narrowed by decreasing the weight of the regularisation 

parameter; however, it was deemed more appropriate to 

use consistent regularisation parameter for each analysis 

method across all of the systems studied. Using a 

consistent value ensured that any difference observed in 

peak widths between systems were due to differences in 

the underlying decay distribution, rather than being due 

to the choice of regularisation parameter. The influence 

of noise is most significant when considering times on the 

same order of magnitude as the channel width (~0.01 ns) 

and so it is reassuring to see that, despite being adjustable 

parameters, the distributive methods show negligible 

amplitude at short lifetime values. 

 

Table 2. Summary of lifetimes obtained for fits to a 

simulated single-exponential decay (Nc: 2412). 

1  (FWHM)/ns 
𝜒𝑅

2 

(𝜒2) 

Simulated 5.00 - 

ItRe (1) 5.00 
0.98 

(2365) 

SESM 
4.99 

(0.65) 

0.99 

(2394) 

MEM 
5.01 

(0.17) 

0.98 

(2366) 

BPDN 5.01 
0.99 

(2376) 

 

Figure 2. Comparison of the results of fitting a simulated four-exponential decay (the parameters of which are shown in the 

top panel). Left: Logarithmic abscissa. Right: Linear abscissa up to 15 ns. 
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3.1.2 Four-exponential function. Figure 2 shows a visual 

representation of the fits obtained for the simulated four-

exponential decay (table 1) and table 3 shows the 

associated fitted parameters. This example was used to 

determine how well the analysis methods would cope 

with the presence of multiple decay components that were 

distributed over a large timescale range. The lifetime 

values used were inspired by the fluorescence decay 

observed for 2AP-containing dinucleotides (see below) 

and so this simulation can be taken as an idealised version 

of an experimental system. 

Generally speaking, the analysis methods perform very 

well at recovering the underlying model. All probabilistic 

methods (SESM, MEM, and BPDN) show four distinct 

components. Lifetimes and probability amplitudes are 

visually well-matched to the simulated decay parameters. 

Given the complexity of the simulated decay, it is 

particularly pleasing to see the success of the distributive 

methods, which were not restricted by any functional 

form during fitting. 

This example provides useful insight into the challenge 

of analysing time-resolved data. Figure 3 shows residuals 

associated with the three- (3and four-exponential (4 

fits of the decay. Superficially, the residuals of the 3 fit 

appear to be randomly distributed (figure 3a, upper plot) 

and the associated statistical parameters (𝜒𝑅
2, DW, and Z) 

are acceptable (indeed, close to ideal values; 1, 2, and 0, 

respectively); this all suggests that the model is a fair 

representation of the data (i.e. it is a good fit). In fact, on 

the basis of the multi-exponential fits, there would appear 

to be no reason to believe a fourth component is 

necessary. This perfectly illustrates the importance of 

ensuring that the residuals are properly inspected at all 

points in the fit. The lower plots in figure 3 show the first 

100 residuals (covering around 1 ns of the initial decay). 

On this timescale it is clear that the three-exponential 

model does not describe the data as well as the four-

exponential model; there is an obvious oscillation in the 

residuals (highlighted by the moving average fit shown in 

red). Without the knowledge that the simulated decay was 

produced with four exponentials, it would have been quite 

easy to miss this deviation at early times. This brings to 

light an important benefit of the probabilistic methods; 

Table 3. Summary of lifetime parameters obtained for fits to a simulated four-exponential decay (Nc: 3567). 

4 
  (FWHM)/ns  a-factor  

〈𝜏〉/ns 
 𝜒𝑅

2 

 ₁ ₂ ₃ ₄  a₁ a₂ a₃ a₄   (𝜒2) 

Simulated 
 

0.06 0.67 3.03 11.11 
 

0.08 0.32 0.41 0.19 
 

3.57 
 

- 

ItRe (3) 
 

- 0.63 2.97 11.05 
 

- 0.35 0.45 0.21 
 

3.82 
 0.99 

(3525) 

ItRe (4) 
 

0.05 0.67 3.01 11.07 
 

0.11 0.30 0.40 0.19 
 

3.46 
 0.98 

(3492) 

SESM 
 0.06 

(0.01) 

0.67 

(0.15) 

3.00 

(0.62) 

11.06 

(1.57) 

 
0.08 0.31 0.41 0.19 

 
3.59 

 0.98 

(3496) 

MEM 
 0.07 

(0.02) 

0.67 

(0.15) 

3.03 

(0.47) 

11.09 

(0.76) 

 
0.08 0.30 0.41 0.19 

 
3.52 

 0.98 

(3496) 

BPDN 
 

0.07 0.70 3.09 11.29 
 

0.09 0.32 0.41 0.19 
 

3.59 
 0.98 

(3509) 

 

Figure 3. Residuals associated with (a) the 3-exponential 

fit and (b) the 4-exponential fit of the simulated 4-

exponential decay. Upper plots show residuals for all fitted 

channels (~40 ns) while the lower plot shows residuals for 

only the first 100 points (~1 ns) of the fit. The red line in 

the lower plots is a moving average fit of the residuals 

based on 5 consecutive points. The 𝜒𝑅
2, Durbin-Watson 

(DW), and Runs Test statistic (Z) for each fit is also given. 
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namely, they all correctly predicted the presence of the 

fourth, short lifetime component. 

 

3.1.3. Gamma distribution. Figure 4 shows a visual 

representation of the fits obtained for a simulated decay 

based on a  distribution of lifetimes (Gamma1, table 1) 

and table 4 shows the associated fitted parameters. This 

example was created to establish whether or not the 

analysis methods were capable of modelling a system 

where there was a spread of similar lifetimes rather than 

well-defined, discrete lifetimes. This situation might 

arise, for example, in a Förster resonance energy transfer 

(FRET) system where there is a distribution of distances 

between donor-acceptor chromophore pairs [6, 17, 42, 

43]. 

The fitting results for this system exemplify the 

difficulty in recovering the true underlying model when 

there is no a priori knowledge to inform judgement. The 

different fitting methods delivered different results, but 

all of the fitted models adequately describe the measured 

decay (under the chosen criteria) and so it would be 

impossible to determine the true model by a simple 

comparison of the quality of the fits. Given the disparity 

of the models, it is particularly unsettling that the 2 and 

1 fits appear to describe the data equally well. 

Table 4. Summary of fit parameters obtained from analyses of a simulated 1 decay (Nc: 2610). 

Gamma1 
  (FWHM)/ns  a-factor  

〈𝜏〉/ns 
 𝜒𝑅

2 

 ₁ ₂ ₃  a1 a2 a3   (𝜒2) 

Simulated 
 〈𝜏𝛤〉: 5.00 

𝜏Γ
∗: 4.55 

𝛽𝛤: 100.00 

𝜙𝛤: 21.00 

 
𝑎𝛤: 1.00 

 
5.00 

 
- 

ItRe (2) 
 

4.09 - 6.33 
 

0.60 - 0.40 
 

5.00 
 0.97 

(2536) 

ItRe (1) 
 〈𝜏𝛤〉: 5.00 

𝜏Γ
∗: 4.56 

𝛽𝛤: 104.31 

𝜙𝛤: 21.86 

 
𝑎𝛤: 1.00 

 
5.00 

 0.97 

(2538) 

SESM 
 

- 
5.17 

(2.56) 
- 

 
- 1.00 - 

 
5.17 

 0.97 

(2535) 

MEM 
 

- 
5.09 

(2.51) 
- 

 
- 1.00 - 

 
5.09 

 0.97 

(2535) 

BPDN 
 

3.16 5.30 10.31 
 

0.21 0.77 0.02 
 

4.98 
 0.98 

(2551) 

 

Figure 4. Comparison of the results of fitting a simulated 1 decay (the parameters of which are shown in the top panel). Left: 

Logarithmic abscissa. Right: Linear abscissa up to 12 ns.  
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The precise value of the fit parameters is not of vital 

importance in the message provided by this example. The 

salient feature of the analysis is that the methods 

complement each other and can be used to guide the 

experimentalist to the most rational choice of model. The 

probabilistic approaches provide a general consensus that 

favours a model based on a distribution of lifetimes rather 

than discrete lifetimes. For instance, the FWHM of the 

peaks in the SESM and the MEM fits is significantly 

greater than that obtained for the discrete components 

analysed in the previous examples. This gives weight to 

the idea of a distribution (or at least unresolvable 

components) being responsible for the observed decay in 

this case. Although the BPDN analysis approach is not 

well-suited to uncovering a distribution of decays [3], the 

shape of the BPDN amplitudes clearly correlates with the 

results from the SESM and the MEM analyses. The 

distribution of amplitudes is also consistent with that 

expected for a multi-exponential fit of a broad 

distribution of lifetimes; namely, there is a major peak at 

the distribution maximum and two other peaks 

approximately ± from this position [17] (note the 

Gamma function is asymmetric, which accounts for the 

relatively small amplitude component on the long lifetime 

side of the major peak). Based on the insight obtained 

from the probabilistic methods, the iterative 

reconvolution method, using the gamma function, (ItRe 

(1)) can then be recognised to provide a more accurate 

description of the lifetime distribution; as is seen in the 

well-matched parameters obtained. 

 

3.1.4 Two-exponential function based on ItRe (2) fit to 

gamma distribution. One way to improve upon the 

confidence of a particular model is to simulate a decay 

based on the calculated parameters and then re-fit to see 

if a consistent set of probability amplitudes is obtained 

[17]. Figure 5 shows a visual representation of the fits 

obtained for a two-exponential decay simulated using the 

parameters from the discrete exponential fit of Gamma1. 

This decay simulation will be denoted as Exp2G. Table 5 

shows the associated fitted parameters from this system. 

As expected, there is very little difference between the 

parameters obtained for the 2 fit and those input to the 

simulated decay. However, the  distribution fit also 

adequately describes the two-exponential decay data. 

Indeed, there is great similarity between the original  

distribution (shown by the dashed, black line in figure 5) 

and the  fit for the two-exponential decay. This means 

that, at the signal-to-noise ratio used (102), iterative 

reconvolution alone cannot bias the choice of model 

underlying Gamma1 and Exp2G decays; in each case, 2 

and 1 models are equally acceptable candidates. 

Without gaining further insight, it would be tempting to 

assign the  distribution model to both Gamma1 and 

Exp2G simulations since it is simpler (i.e. has fewer 

adjustable parameters) than the 2 model. 

Figure 5. Comparison of the results of fitting a simulated two-exponential decay based on the parameters of the ItRe (2) fit 

of the 1 decay. Left: Logarithmic abscissa. Right: Linear abscissa up to 12 ns. The parameters of the simulated decay are 

shown in the top panel, together with the original  distribution, shown by the dashed, black line. 
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Importantly, there is a significant difference in the 

results obtained for the distributive methods; all of these 

methods show two well-defined components rather than 

a single broad peak (SESM and MEM) or three discrete 

components (BPDN) that was observed for the Gamma1 

decay. This discrepancy helps to rule out the 2 model as 

a plausible description of the Gamma1 system (which is, 

of course, consistent with the fact that it is the wrong 

model). If the 2 model had been correct then the 

Gamma1 and Exp2G decays would have been equivalent, 

within error, from the perspective of the probabilistic 

methods, thus, the distributions obtained should have 

been similar. 

Note that there is still no guarantee about any of the 

models being correct, the Exp2G simulation simply 

shows that a 2 model is unlikely to be the true model for 

the Gamma1 system. Nevertheless, careful consideration 

of the results from all of the different methods would 

hopefully lead to the conclusion that the Gamma1 decay 

was due to a 1 model (or at least a model based on a 

distribution of decay lifetimes) and the Exp2G decay was 

due to a 2 model. 

This example highlights the potential power of using 

probabilistic methods in combination with deterministic 

ones. Without imposing a model form, the distributive 

methods found a broad peak for the simulated  

distribution but found a double peak for the simulated 2 

system. This shows that probabilistic methods could be 

used to give an unbiased estimate of the underlying 

model. On the other hand, the deterministic (iterative 

reconvolution) method provided more accurate model 

parameters than the probabilistic approaches when the 

true underlying model was used. Deterministic methods 

could therefore be used to refine the model that was 

initially determined by a probabilistic approach. 

Of course, it is easy to argue for a particular model 

when the true model is already known. It may be useful 

to perform blind simulations in the future to determine the 

practical reliability of combining analysis methods. This 

being said, while simulated decays provide great insight 

into the different analysis strategies, the capability of an 

analysis method should really be assessed with real, 

experimental data, which may contain unexpected 

distortions that are not considered in simulations. 

 

3.2. Experimental decays 

3.2.1. 2AP-G dinucleotide. Figure 6 shows a visual 

representation of the fits obtained for the fluorescence 

decay of the 2AP-G dinucleotide and table 6 shows the 

associated fitted parameters. 

The analysis methods generally show four components 

that are consistent with the typical parameters obtained 

for 2AP in nucleic acid constructs [39, 44]. The similarity 

of the fit parameters obtained for the different methods 

gives confidence in the results. The probabilistic methods 

also give some insight into the underlying dynamics 

responsible for the fluorescence decay. The results 

presented here favour the more conventional 

interpretation of the intermediate decay components as 

two distinct lifetimes. All of the methods exhibit well-

separated components and show no indication of a broad 

distribution being responsible for the intermediate 

components. Furthermore, the widths of the peaks 

obtained from the probabilistic methods are comparable 

to those obtained for the simulated decays based on 

discrete components and far smaller than those observed 

for the Gamma1 lifetime distribution. 

Table 5. Summary of lifetime parameters obtained for fits to a simulated two-exponential decay (Nc: 2561) based on the 

parameters of ItRe (2) fit to the 1decay given in table 4. 

Exp2G 
  (FWHM)/ns  a-factor  

〈𝜏〉/ns 
 𝜒𝑅

2 

 ₁ ₂  a1 a2   (𝜒2) 

Simulated 
 

4.09 6.33 
 

0.60 0.40 
 

5.00 
 

- 

ItRe (1) 
 〈𝜏𝛤〉: 5.00 

𝜏Γ
∗: 4.58 

𝛽𝛤: 108.98 

𝜙𝛤: 22.79 

 
𝑎𝛤: 1.00 

 
5.00  

0.98 

(2586) 

ItRe (2) 
 

3.93 6.10 
 

0.51 0.49 
 

4.99 
 0.97 

(2561) 

SESM 
 3.94 

(0.88) 

5.99 

(1.50) 

 
0.46 0.54 

 
5.05 

 0.97 

(2563) 

MEM 
 3.91 

(0.68) 

6.11 

(1.09) 

 
0.48 0.52 

 
5.05 

 0.97 

(2563) 

BPDN 
 

4.19 6.75 
 

0.68 0.32 
 

5.00 
 0.97 

(2575) 
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3.2.2. 2AP-I dinucleotide. Figure 7 shows a visual 

representation of the fits obtained for the fluorescence 

decay of the 2AP-I dinucleotide and table 7 shows the 

associated fitted parameters. 

Again, the methods generally show four components 

that are consistent with the typical parameters obtained 

for 2AP in nucleic acid constructs. The 2AP-G and 2AP-

I results differ significantly in the contribution from the 

short lifetime component; indeed, it is questionable 

whether the component is real or spurious for 2AP-I. The 

amplitude of the short lifetime component is very small 

and this is compounded by the fact that the nominal 

lifetime value varies considerably between the different 

analysis methods. 

Figure 8 shows residuals associated with the three- and 

four-exponential fits of the 2AP-I decay. Similar to the 

simulated four-exponential decay results, the 3 fit 

residuals appear to be randomly distributed (figure 8a, 

upper plot) and the associated statistical parameters (𝜒𝑅
2, 

DW, and Z) are acceptable suggesting that the model is a 

fair representation of the data. Unlike the simulated four-

exponential decay results, the addition of another 

component makes very little difference to the residuals. 

There is slight evidence of improvement on the short 

timescale (figure 8, lower plots), but the difference is 

almost negligible compared to the random variation 

observed at longer times. It is difficult to argue the case 

for the need of a fourth exponential term. Nevertheless, 

the probabilistic methods do all exhibit a short lifetime 

peak, albeit a very small (~2%) component (note that this 

peak in the MEM distribution has very low amplitude, 

due to its broad width; the peak is essentially invisible in 

the plot in figure 7). Although it would be naïve to present 

Figure 6. Comparison of fits for the fluorescence decay of a 2AP-G dinucleotide (excitation and emission wavelengths were 

300 nm and 380 nm, respectively). Left: Logarithmic abscissa. Right: Linear abscissa up to 12 ns. 
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Table 6. Summary of lifetime parameters obtained for fits to the fluorescence decay of a 2AP-G dinucleotide (Nc: 3090). 

2AP-G 
  (FWHM)/ns  a-factor  

〈𝜏〉/ns 
 𝜒𝑅

2 

 ₁ ₂ ₃ ₄  a₁ a₂ a₃ a₄   (𝜒2) 

ItRe (4) 
 

0.05 0.44 1.77 9.27 
 

0.48 0.12 0.30 0.10 
 

1.55 
 0.99 

(3060) 

SESM 
 0.06 

(0.16) 

0.46 

(0.10) 

1.76 

(0.41) 

9.24 

(1.38) 

 
0.44 0.12 0.33 0.11 

 
1.70 

 0.99 

(3070) 

MEM 
 0.06 

(0.02) 

0.47 

(0.14) 

1.78 

(0.37) 

9.27 

(0.82) 

 
0.44 0.12 0.33 0.11 

 
1.70 

 0.99 

(3070) 

BPDN 
 

0.05 0.46 1.77 9.24 
 

0.47 0.12 0.30 0.11 
 

1.61 
 1.00 

(3083) 
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these results as definitive evidence of a fourth component 

in the fluorescence decay of 2AP-I, they show that such a 

component can be detected in an unbiased optimisation. 

For a more conclusive analysis it would be necessary to 

improve the quality of the data (for example, by 

increasing the counts in the peak channel) or perhaps 

perform global analysis on multiple decays. It may also 

be necessary to use a technique with higher temporal 

resolution (such as fluorescence upconversion) to ensure 

the observation of a short lifetime component in 2AP-I is 

not simply an artefact of shortcomings in convolution 

strategy (e.g. imperfect IRF shift optimisation). Again, 

the precise detail of the analysis presented here is not the 

main message of this contribution. The important 

consideration is that probabilistic methods can provide 

insight into the underlying dynamics that might otherwise 

be overlooked. 

 

4. Discussion 

In light of the results presented above, benefits and 

limitations of the various analysis methods that were used 

during this study will now be reviewed. 

 

4.1. Iterative reconvolution 

As expected, the iterative reconvolution method was 

able to accurately recover the underlying dynamics of the 

simulated decays; however, the success of this approach 

relied greatly on the prior knowledge of the simulations. 

On the face of it, the four-exponential decay appeared to 

be adequately described by only three-exponentials; only 

Figure 7. Comparison of fits obtained for the fluorescence decay of a 2AP-I dinucleotide (excitation and emission wavelengths 

were 300 nm and 380 nm, respectively). Left: Logarithmic abscissa. Right: Linear abscissa up to 12 ns. 
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Table 7. Summary of lifetime parameters obtained for 2AP-I dinucleotide fluorescence decay (Nc: 2097). 

2AP-I 
  (FWHM)/ns  a-factor  

〈𝜏〉/ns 
 𝜒𝑅
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 ₁ ₂ ₃ ₄  a₁ a₂ a₃ a₄   (𝜒2) 

ItRe (3) 
 

- 0.82 3.03 8.27 
 

- 0.33 0.61 0.06 
 

2.63 
 1.06 

(2215) 

ItRe (4) 
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2.41 
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SESM 
 0.07 

(0.01) 

0.82 

(0.23) 

3.10 

(0.93) 
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0.02 0.31 0.61 0.05 

 
2.63 

 1.05 
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(0.89) 
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BPDN 
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careful scrutiny of the residuals showed that this fit was 

actually deficient. This is precisely the reason why the 

probabilistic methods investigated here may be of 

significant use in the analysis of time-resolved 

fluorescence data. 

 

4.2. Smoothed exponential series method 

Given the simplicity of the constraint function used, the 

results obtained from the SESM analysis are quite 

remarkable. Without imposing any model form on the fit, 

the SESM analysis gave lifetime distributions that were 

in very good agreement with the simulated parameters. 

Of course, there were some limitations to the method, 

such as the fact that the discrete exponential components 

were described by peaks rather than points. Additionally, 

although the SESM method correctly predicted two 

components for the Exp2G decay, the relative weighting 

of the components had considerable error. This is hardly 

surprising though; in addition to the influence of noise, 

the lifetime components were close in value and the 

corresponding amplitudes were also fairly similar. The 

Exp2G system was, in effect, not well suited to 

probabilistic analysis. In this situation iterative 

reconvolution is preferred and, indeed, was found to give 

more accurate fit parameters (though it still suffered from 

the close proximity of the lifetimes as well as their similar 

amplitudes, which resulted in a slight discrepancy 

between the simulated and fitted parameters; a higher 

signal-to-noise ratio would be required to recover the true 

decay model). 

It is worth pointing out that the optimal value for the 

regularisation parameter, , for the SESM (and the MEM 

and BPDN) analysis was estimated through the use of 

simulated decays, which allowed direct comparison of the 

fits with the known form of the true decay. In future 

studies it might be necessary to simulate decays with 

similar properties to the real data to be fitted (for example, 

number of channels and signal-to-noise ratio) to provide 

an estimate for the appropriate regularisation parameter 

weighting to use. Alternatively, it may be beneficial to 

use more objective methods, such as the L-curve, 

minimal product method, or generalized cross-validation 

techniques, to set the regularisation parameter [45]. 

 

4.3. Maximum entropy method 

The MEM performed in a comparable manner to the 

SESM. In general, but not always, the MEM provided 

narrower peaks for discrete components. It is worth 

pointing out that, despite longer optimisation times, the 

MEM has a considerable advantage over the SESM (and 

other distribution-based analysis strategies) by providing 

uncorrelated solutions [15]; that is, a-factors within the 

distribution are not influenced by their neighbours. For 

example, the peak width obtained by the SESM is 

influenced by the density of time constants used in the 

analysis (which changes across the distribution when 

using logarithmic spacing). In contrast, the solution 

obtained using the MEM is unaffected by the spacing of 

time constants. It should be noted that the fitting 

algorithm used for the MEM analysis was fairly basic. 

For instance, it did not use strategies such as setting the 

regularisation parameter with Bayesian logic [46] and 

stopping the minimisation when the gradients of change 

in 𝜒𝑅
2 and entropy (CMEM) are orthogonal (since one is 

minimised while the other is maximised) [17]. Despite 

these limitations the consistency of the results with other 

methods suggests that the algorithm performed 

adequately for the purposes of this study. 

 

4.4. Basis pursuit denoising 

The BPDN method appears to be an extremely 

proficient method for recovering a good estimate of the 

underlying decay model without imposing any restriction 

upon the form of the solution. A particularly attractive 

feature of the BPDN approach is the fact that it attempts 

to find the solution with fewest components: the simplest 

model. Again, there are some limits to this method that 

should be highlighted. As with iterative reconvolution, 

adequately describing the observed behaviour with a set 

of discrete lifetimes does not necessarily mean that this is 

the true model of the system. Indeed, when performing 

fits of decays that are known to be due to a distribution of 

lifetimes (for example, Gamma1) it is still possible for a 

discrete set of lifetimes to successfully model the data 

Figure 8. Residuals associated with (a) the 3-exponential 

fit and (b) the 4-exponential fit of the 2AP-I fluorescence 

decay. Upper plots show residuals for all fit channels 

(~30 ns) while the lower plot shows data for only the first 

100 points (~1 ns) of the fit. The red line in the lower plots 

is a moving average fit of the residuals based on 5 

consecutive points. The 𝜒𝑅
2, Durbin-Watson (DW), and 

Runs Test statistic (Z) for each fit is also given. 
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within the resolution and noise limits offered by the 

experimental technique. As it aims to minimize the 

number of contributing components, the BPDN analysis 

approach is inherently poor at recovering a distribution of 

lifetimes; however, it is encouraging that the general 

shape of the lifetime amplitudes was consistent with the 

simulated decay lifetime distribution for the Gamma1 

simulation. Additionally, Groma et al. found that it was 

possible to recover a distribution of decay lifetimes using 

BPDN if a large number of decays (~100) were simulated 

[3]. As BPDN is sensitive to noise, each decay fit resulted 

in slightly different peak positions which, on average, 

recovered the underlying distribution of lifetimes. This is 

a viable process for simulations, where many decays can 

be generated instantaneously, but it is unlikely to be 

feasible for a real system, due to the considerable time it 

can take to measure even a single decay. More of a 

concern, however, is the fact that the specific noise 

present in the decay has influence on the lifetime 

parameters obtained and, occasionally, the appearance of 

extraneous components. Similar to the other probabilistic 

methods, it would seem preferable to refine the solution 

obtained by BPDN by using a deterministic approach. 

 

5. Conclusions 

Various analytical methods for time-resolved 

fluorescence data have been investigated with 

experimental and simulated decays in an attempt to obtain 

an overview of their benefits and limitations. The results 

have provided insight into the relative merits of using 

deterministic approaches, such as the commonly used 

iterative reconvolution method, and probabilistic 

approaches, such as the smoothed exponential series 

method (SESM), the maximum entropy method (MEM) 

and recently proposed basis pursuit denoising (BPDN, 

compressed sensing) method. 

In addition to idealised discrete exponentials models, 

which are typically used to simulate fluorescence decay 

curves, the analytical methods were also tested with a 

decay that was based on a distribution of lifetimes. Such 

a distributive model can be more physically appropriate 

for some real systems and therefore allowed a more 

complete assessment of the capabilities of the various 

methods to be carried out. For the most part, all of the 

analytical approaches were able to recover the underlying 

model that had been simulated. The main outcome of this 

evaluation is that no single method is preferred 

universally, and there is likely to be value in using a 

combination of multiple methods when there is ambiguity 

in the interpretation of the results. While this strategy may 

still not be sufficient to provide a definitive model of the 

system, it should be able to provide a model good enough 

to enable the experimentalist to achieve a satisfactory, 

physical interpretation of their data. 

Ultimately, regardless of the analytical approach taken, 

the reliability of the results obtained from any method is 

heavily dependent on the quality of the data available. 

Care is needed to ensure that potential experimental 

shortcomings (such as pile up and decay overlap) do not 

degrade the accuracy of any resulting analysis [47]. 

Collecting decay data with extremely good signal-to-

noise ratio is undoubtedly necessary to be able to 

discriminate between complex candidate models. 

 

5.1. Outlook 

Unfortunately, despite advances in experimental 

equipment (higher sensitivity detectors, wavelength-

independent response, lower background counts, and so 

on), the fundamental challenge of obtaining the most 

physically realistic decay model remains, because there is 

not a technological solution. The main problem with 

using the null hypothesis to determine the model which 

best describes the system is that it cannot definitively 

provide the correct model; it can only indicate that the 

tested model might be correct. Indeed, it is important to 

heed the warnings given by James and Ware concerning 

the interpretation of TCSPC data when there is an absence 

of supplementary information to corroborate the model 

chosen, particularly in instances where decays are 

collected to an inadequate signal-to-noise ratio [10]. 

Given the unavoidable nature of this problem, all that can 

be hoped for is that the model that is finally selected is the 

best possible choice given the information available. The 

results presented here have shown that the combination 

of probabilistic and deterministic analysis methods can 

enable a much more confident prediction to be made 

about the true model that underlies the observed 

fluorescence decay. 

While clearly powerful, the uptake of probabilistic 

analysis methods is potentially limited by technical 

barriers. Fortunately, new tools, which often exploit the 

wealth of data available from multi-wavelength 

techniques (such as transient absorption), are being 

developed. Slavov et al. recently introduced OPTIMUS, 

which is a modular, MATLAB-based package capable of 

performing global and distribution analysis [45]. Such 

convenient platforms should facilitate the adoption of 

probabilistic analysis methods like those described in this 

study (as well as other advanced analytical techniques); 

this will be invaluable in making sense of complex 

systems that would otherwise be difficult to characterise. 

Furthermore, advances in well-established analysis 

strategies ensure that the most is made from collected 

data. Novel approaches should enable faster, more 

accurate, and more fruitful analysis to be carried out. For 

instance, a new maximum entropy method algorithm 

developed by Esposito et al. enabled analysis of larger 

datasets as well as the accurate characterisation of the 

heterogeneity within a lifetime distribution [48]. 

Parallel to the development of  probabilistic analysis 

strategies, there should be continued effort to provide 

appropriate, non-exponential models that accurately 
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describe the photophysical phenomena that underpin 

observed experimental data [49]. As has been outlined 

above, probabilistic models may provide a good first 

estimate of the underlying model but a more precise (and 

perhaps more enlightening) description might only be 

found by using the most physically realistic, deterministic 

description of the system. 

Time-resolved fluorescence techniques provide crucial 

insight into the underlying mechanics of a great variety of 

systems. It is therefore imperative that the best is made of 

the data collected by developing and refining the analysis 

strategies that are available. 
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