1,836 research outputs found

    The p75NTR SIGNALING CASCADE MEDIATES MECHANICAL HYPERALGESIA INDUCED BY NERVE GROWTH FACTOR INJECTED INTO THE RAT HIND PAW

    Get PDF
    Nerve Growth Factor (NGF) augments excitability of isolated rat sensory neurons through activation of the p75 neurotrophin receptor (p75NTR) and its downstream sphingomyelin signaling cascade, wherein neutral sphingomyelinase(s) (nSMase), ceramide, and the atypical PKC (aPKC), PKMĪ¶, are key mediators. Here we examined these same receptor-pathways in vivo for their role in mechanical hyperalgesia from exogenous NGF. Mechanical sensitivity was tested by the number of paw withdrawals in response to 10 stimuli (PWF = n/10) by a 4g von Frey hair (VFH, testing ā€œallodyniaā€) and by 10g and 15g VFHs (testing ā€œhyperalgesiaā€). NGF (500 ng/10 Āµl) injected into the male ratā€™s plantar hind paw induced long lasting ipsilateral mechanical hypersensitivity. Mechano-hypersensitivity, relative to baseline responses and to those of the contralateral paw, developed by 0.5ā€“1.5h and remained elevated at least for 21ā€“24h, Acute intraplantar pre-treatment with nSMase inhibitors, GSH or GW4869, prevented the acute hyperalgesia from NGF (at 1.5h) but not that at 24h. A single injection of N-acetyl sphingosine (C2-ceramide), simulating the ceramide produced by nSMase activity, induced ipsilateral allodynia that persisted for 24h, and transient hyperalgesia that resolved by 2h. Intraplantar injection of hydrolysis-resistant mPro-NGF, selective for the p75NTR over the TrkA receptor, gave very similar results to NGF and was susceptible to the same inhibitors. Hyperalgesia from both NGF and mPro-NGF was prevented by paw pre-injection with blocking antibodies to rat p75NTR receptor. Finally, intraplantar (1 day before NGF) injection of mPSI, the myristolated pseudosubstrate inhibitor of PKCĪ¶/PKMĪ¶, decreased the hyperalgesia resulting from NGF or C2-ceramide, although scrambled mPSI was ineffective. The findings indicate that mechano-hypersensitivity from peripheral NGF involves the sphingomyelin signaling cascade activated via p75NTR, and that a peripheral aPKC is essential for this sensitization

    The TrkA receptor mediates experimental thermal hyperalgesia produced by nerve growth factor: Modulation by the p75 neurotrophin receptor

    Get PDF
    The p75 neurotrophin receptor (p75NTR) and its activation of the sphingomyelin signaling cascade are essential for mechanical hypersensitivity resulting from locally injected nerve growth factor (NGF). Here the roles of the same effectors, and of the tropomyosin receptor kinase A (TrkA) receptor, are evaluated for thermal hyperalgesia from NGF. Sensitivity of rat hind paw plantar skin to thermal stimulation after local sub-cutaneous injection of NGF (500ng) was measured by the latency for paw withdrawal (PWL) from a radiant heat source. PWL was reduced from baseline values at 0.5-22h by āˆ¼40% from that in naĆÆve or vehicle-injected rats, and recovered to pre-injection levels by 48h. Local pre-injection with a p75NTR blocking antibody did not affect the acute thermal hyperalgesia (0.5-3.5h) but hastened its recovery so that it had reversed to baseline by 22h. In addition, GW4869 (2mM), an inhibitor of the neutral sphingomyelinase (nSMase) that is an enzyme in the p75NTR pathway, also failed to prevent thermal hyperalgesia. However, C2-ceramide, an analog of the ceramide produced by sphingomyelinase, did cause thermal hyperalgesia. Injection of an anti-TrkA antibody known to promote dimerization and activation of that receptor, independent of NGF, also caused thermal hyperalgesia, and prevented the further reduction of PWL from subsequently injected NGF. A non-specific inhibitor of tropomyosin receptor kinases, K252a, prevented thermal hyperalgesia from NGF, but not that from the anti-TrkA antibody. These findings suggest that the TrkA receptor has a predominant role in thermal hypersensitivity induced by NGF, while p75NTR and its pathway intermediates serve a modulatory role

    Peripheral Synthesis of an Atypical Protein Kinase C Mediates the Enhancement of Excitability and the Development of Mechanical Hyperalgesia Produced by Nerve Growth Factor

    Get PDF
    Nerve growth factor (NGF) plays a key role in the initiation as well as the prolonged heightened pain sensitivity of the inflammatory response. Previously, we showed that NGF rapidly augmented both the excitability of isolated rat sensory neurons and the mechanical sensitivity of the ratā€™s hind paw. The increase in excitability and sensitivity was blocked by the myristoylated pseudosubstrate inhibitor of atypical PKCs (mPSI), suggesting that an atypical PKC may play a key regulatory role in generating this heightened sensitivity. Our findings raised the question as to whether NGF directs changes in translational control, as suggested for long-lasting long-term potentiation (LTP), or whether NGF leads to the activation of an atypical PKC by other mechanisms. The current studies demonstrate that enhanced action potential (AP) firing produced by NGF was blocked by inhibitors of translation, but not transcription. In parallel, in vitro studies showed that NGF elevated the protein levels of PKMĪ¶, which was also prevented by inhibitors of translation. Intraplantar injection of NGF in the rat hind paw produced a rapid and maintained increase in mechanical sensitivity whose onset was delayed by translation inhibitors. Established NGF-induced hypersensitivity could be transiently reversed by injection of rapamycin or mPSI. These results suggest that NGF produces a rapid increase in the synthesis of PKMĪ¶ protein in the paw that augments neuronal sensitivity and that the ongoing translational expression of PKMĪ¶ plays a critical role in generating as well as maintaining the heightened sensitivity produced by NGF

    Free-Living Humans Cross Cardiovascular Disease Risk Categories Due to Daily Rhythms in Cholesterol and Triglycerides

    Get PDF
    Cardiovascular disease risk assessment relies on single time-point measurement of risk factors. Although significant daily rhythmicity of some risk factors (e.g., blood pressure and blood glucose) suggests that carefully timed samples or biomarker timeseries could improve risk assessment, such rhythmicity in 'lipid' risk factors is not well understood in free-living humans. As recent advances in at-home blood testing permit lipid data to be frequently and reliably self-collected during daily life, we hypothesized that total cholesterol, HDL-cholesterol or triglycerides would show significant time-of-day variability under everyday conditions. To address this hypothesis, we worked with data collected by 20 self-trackers during personal projects. The dataset consisted of 1,319 samples of total cholesterol, HDL-cholesterol and triglycerides, and comprised timeseries illustrating intra and inter-day variability. All individuals crossed at least one risk category in at least one output within a single day. 90% of fasted individuals (n = 12) crossed at least one risk category in one output during the morning hours alone (06:00ā€“08:00) across days. Both individuals and the aggregated group show significant, rhythmic change by time of day in total cholesterol and triglycerides, but not HDL-cholesterol. Two individuals collected additional data sufficient to illustrate ultradian (hourly) fluctuation in triglycerides, and total cholesterol fluctuation across the menstrual cycle. Short-term variability of sufficient amplitude to affect diagnosis appears common. We conclude that cardiovascular risk assessment may be augmented via further research into the temporal dynamics of lipids. Some variability can be accounted for by a daily rhythm, but ultradian and menstrual rhythms likely contribute additional variance

    Novel O-palmitolylated beta-E1 subunit of pyruvate dehydrogenase is phosphorylated during ischemia/reperfusion injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During and following myocardial ischemia, glucose oxidation rates are low and fatty acids dominate as a source of oxidative metabolism. This metabolic phenotype is associated with contractile dysfunction during reperfusion. To determine the mechanism of this reliance on fatty acid oxidation as a source of ATP generation, a functional proteomics approach was utilized.</p> <p>Results</p> <p>2-D gel electrophoresis of mitochondria from working rat hearts subjected to 25 minutes of global no flow ischemia followed by 40 minutes of aerobic reperfusion identified 32 changes in protein abundance compared to aerobic controls. Of the five proteins with the greatest change in abundance, two were increased (long chain acyl-coenzyme A dehydrogenase (48 Ā± 1 versus 39 Ā± 3 arbitrary units, n = 3, P < 0.05) and Ī± subunit of ATP synthase (189 Ā± 15 versus 113 Ā± 23 arbitrary units, n = 3, P < 0.05)), while two were decreased (24 kDa subunit of NADH-ubiquinone oxidoreductase (94 Ā± 7 versus 127 Ā± 9 arbitrary units, n = 3, P < 0.05) and D subunit of ATP synthase (230 Ā± 11 versus 368 Ā± 47 arbitrary units, n = 3, P < 05)). Two forms of pyruvate dehydrogenase Ī²E1 subunit, the rate-limiting enzyme for glucose oxidation, were also identified. The protein level of the more acidic form of pyruvate dehydrogenase was reduced during reperfusion (37 Ā± 4 versus 56 Ā± 7 arbitrary units, n = 3, P < 05), while the more basic form remained unchanged. The more acidic isoform was found to be O-palmitoylated, while both isoforms exhibited ischemia/reperfusion-induced phosphorylation. <it>In silico </it>analysis identified the putative kinases as the insulin receptor kinase for the more basic form and protein kinase CĪ¶ or protein kinase A for the more acidic form. These modifications of pyruvate dehydrogenase are associated with a 35% decrease in glucose oxidation during reperfusion.</p> <p>Conclusions</p> <p>Cardiac ischemia/reperfusion induces significant changes to a number of metabolic proteins of the mitochondrial proteome. In particular, ischemia/reperfusion induced the post-translational modification of pyruvate dehydrogenase, the rate-limiting step of glucose oxidation, which is associated with a 35% decrease in glucose oxidation during reperfusion. Therefore these post-translational modifications may have important implications in the regulation of myocardial energy metabolism.</p

    A novel approach to identify driver genes involved in androgen-independent prostate cancer

    Full text link
    Abstract Background Insertional mutagenesis screens have been used with great success to identify oncogenes and tumor suppressor genes. Typically, these screens use gammaretroviruses (Ī³RV) or transposons as insertional mutagens. However, insertional mutations from replication-competent Ī³RVs or transposons that occur later during oncogenesis can produce passenger mutations that do not drive cancer progression. Here, we utilized a replication-incompetent lentiviral vector (LV) to perform an insertional mutagenesis screen to identify genes in the progression to androgen-independent prostate cancer (AIPC). Methods Prostate cancer cells were mutagenized with a LV to enrich for clones with a selective advantage in an androgen-deficient environment provided by a dysregulated gene(s) near the vector integration site. We performed our screen using an in vitro AIPC model and also an in vivo xenotransplant model for AIPC. Our approach identified proviral integration sites utilizing a shuttle vector that allows for rapid rescue of plasmids in E. coli that contain LV long terminal repeat (LTR)-chromosome junctions. This shuttle vector approach does not require PCR amplification and has several advantages over PCR-based techniques. Results Proviral integrations were enriched near prostate cancer susceptibility loci in cells grown in androgen-deficient medium (pā€‰<ā€‰0.001), and five candidate genes that influence AIPC were identified; ATPAF1, GCOM1, MEX3D, PTRF, and TRPM4. Additionally, we showed that RNAi knockdown of ATPAF1 significantly reduces growth (pā€‰<ā€‰0.05) in androgen-deficient conditions. Conclusions Our approach has proven effective for use in PCa, identifying a known prostate cancer gene, PTRF, and also several genes not previously associated with prostate cancer. The replication-incompetent shuttle vector approach has broad potential applications for cancer gene discovery, and for interrogating diverse biological and disease processes.http://deepblue.lib.umich.edu/bitstream/2027.42/109477/1/12943_2014_Article_1323.pd

    Identifying opportunities for timely diagnosis of bladder and renal cancer via abnormal blood tests: a longitudinal linked data study.

    Get PDF
    BACKGROUND: Understanding pre-diagnostic test use could reveal diagnostic windows where more timely evaluation for cancer may be indicated. AIM: To examine pre-diagnostic patterns of results of abnormal blood tests in patients with bladder and renal cancer. DESIGN AND SETTING: A retrospective cohort study using primary care and cancer registry data on patients with bladder and renal cancer who were diagnosed between April 2012 and December 2015 in England. METHOD: The rates of patients with a first abnormal result in the year before cancer diagnosis, for 'generic' (full blood count components, inflammatory markers, and calcium) and 'organ-specific' blood tests (creatinine and liver function test components) that may lead to subsequent detection of incidental cancers, were examined. Poisson regression was used to detect the month during which the cohort's rate of each abnormal test started to increase from baseline. The proportion of patients with a test found in the first half of the diagnostic window was examined, as these 'early' tests might represent opportunities where further evaluation could be initiated. RESULTS: Data from 4533 patients with bladder and renal cancer were analysed. The monthly rate of patients with a first abnormal test increased towards the time of cancer diagnosis. Abnormalities of both generic (for example, high inflammatory markers) and organ-specific tests (for example, high creatinine) started to increase from 6-8 months pre-diagnosis, with 25%-40% of these patients having an abnormal test in the 'early half' of the diagnostic window. CONCLUSION: Population-level signals of bladder and renal cancer can be observed in abnormalities in commonly performed primary care blood tests up to 8 months before diagnosis, indicating the potential for earlier diagnosis in some patients

    Molecular mechanisms underlying the effects of statins in the central nervous system

    Get PDF
    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statinsā€™ effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statinsā€™ effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statinsā€™ possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed
    • ā€¦
    corecore