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Abstract  

Nerve growth factor plays a key role in the initiation as well as the prolonged heightened pain 

sensitivity of the inflammatory response.  Previously, we showed that NGF rapidly augmented 

both the excitability of isolated rat sensory neurons and the mechanical sensitivity of the rat’s 

hind paw.  The increase in excitability and sensitivity were blocked by the myristolated 

pseudosubstrate inhibitor of atypical PKCs (mPSI), suggesting that an atypical PKC may play a 

key regulatory role in generating this heightened sensitivity.  Our findings raised the question as 

to whether NGF directs changes in translational control, as suggested for long-lasting LTP, or 

whether NGF leads to the activation of an atypical PKC by other mechanisms.  The current 

studies demonstrate that enhanced action potential firing produced by NGF was blocked by 

inhibitors of translation, but not transcription.  In parallel, in vitro studies showed that NGF 

elevated the protein levels of PKMζ, which was also prevented by inhibitors of translation.  

Intraplantar injection of NGF in the rat hind paw produced a rapid and maintained increase in 

mechanical sensitivity whose onset was delayed by translation inhibitors.  Established NGF-

induced hypersensitivity could be transiently reversed by injection of rapamycin or mPSI.  These 

results suggest that NGF produces a rapid increase in the synthesis of PKMζ protein in the paw 

that augments neuronal sensitivity and that the ongoing translational expression of PKMζ plays 

a critical role in generating as well as maintaining the heightened sensitivity produced by NGF.   
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Highlights: 

 NGF produced a significant time-dependent increase in the number of APs, which was 
blocked by inhibitors of translation, but not transcription 
 

 NGF increased the levels of PKMζ protein that was blocked by inhibitors of translation 
 
 

 Injection of NGF produced a hindpaw mechanical hypersensitivity whose onset was 
delayed by inhibitors of translation 
 

 Established mechanical hypersensitivity produced by NGF could be reversed by either 
rapamycin or mPSI 
 

 

Keywords:  sensory neuron; sensitization; neurotrophin; protein synthesis; excitability; 

hyperalgesia 

 

Abbreviations: APs, action potentials; CFA, complete Freund’s adjuvant; DRG, dorsal root 

ganglion; HPRT, hypoxanthine-guanine phosphoribosyltransferase; LTP, long-term potentiation; 

MPE, maximal possible effect; mPSI, myristolated pseudosubstrate inhibitor of atypical PKCs; 

NGF, nerve growth factor; RE, response efficiency; VFH, von Frey hair; ZIP, zeta inhibitory 

peptide 
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Introduction 

Neurotrophins, such as nerve growth factor (NGF), play key roles in the initiation of the 

inflammatory response by their ability to activate or traffic a variety of immune cells to a site of 

injury (Levi-Montalcini et al., 1996; Skaper, 2001; Villoslada and Genain, 2004; Nockher and 

Renz, 2006; Linker et al., 2009; Seidel et al., 2010).  An early study demonstrated that the levels 

of NGF were elevated in blister exudates obtained from the hindpaw skin of rats (Weskamp and 

Otten, 1987).  Additionally, application of NGF was shown to lead to the release of histamine 

(Bruni et al., 1982; Mazurek et al., 1986) and serotonin (Horigome et al., 1993) from rat 

peritoneal mast cells.  NGF was proven to be chemotactic for human (Gee et al., 1983) and 

mouse (Boyle et al., 1985) polymorphonuclear leukocytes.  Human B cells express the TrkA 

receptor for NGF (Otten et al., 1989; Brodie and Gelfand, 1992) and their proliferation was 

augmented upon exposure to NGF (Otten et al., 1989; Brodie and Gelfand, 1992; Thorpe and 

Perez-Polo, 1987).  Finally, immune-competent cells, such as mouse CD4+ and CD8+ T 

lymphocytes (Ehrhard et al., 1993; Santambrogio et al., 1994) and rat peritoneal mast cells 

(Leon et al., 1994), express the mRNA for NGF as well release biologically active NGF upon 

activation.   

 

In this capacity, NGF can also enhance the sensitivity of nociceptive sensory neurons to 

different modalities of stimulation and thereby lead to heightened pain states (reviewed by 

McMahon, 1996; Woolf, 1996).  Intraperitoneal injection of NGF was reported to greatly 

enhance the sensitivity to both mechanical and thermal stimulation of the hindpaw of a rat 

(Lewin et al., 1993).  Intraplantar injection of complete Freund’s adjuvant (CFA) also augments 

the hindpaw sensitivity to mechanical or thermal stimulation; this CFA-induced hypersensitivity 
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was blocked by injection of an antibody to NGF, indicating that elevated NGF directly mediates 

this inflammatory pain (Woolf et al., 1994; Lewin et al., 1994; Nicol and Vasko, 2007).   

 

The hypersensitivity of nociceptive sensory neurons after exposure to inflammatory mediators 

has, in some ways, been likened to the effects of agonist- or high frequency-stimulation of nerve  

fibers in the hippocampus that result in long-term potentiation (LTP).  The long-lasting or 

maintenance phase of LTP depends on the synthesis of new proteins (Stanton and Sarvey, 

1984; Kelleher et al., 2004; Costa-Mattioli et al., 2009) wherein one key protein associated with 

LTP is the atypical PKC known as PKMζ (Sacktor et al., 1993; Sacktor, 2011).  PKMζ can be 

expressed from an internal promoter within the full length PKCζ gene, resulting in a truncated 

product that lacks the regulatory domain, rendering this product constitutively active (Hernandez 

et al., 2003).  Several different studies suggested that this variant plays a key role in the 

maintenance of long-term synaptic strength.  For example, treatment with the myristolated 

pseudosubstrate inhibitor (mPSI) of atypical PKCs reversed established LTP (Ling et al., 2002).  

In an in vivo study of conditioned taste aversion (CTA) as an animal model of memory, infusion 

of mPSI into the insular cortex suppressed the CTA memory (Shema et al., 2007).  Finally, lenti-

viral over-expression of PKMζ enhanced CTA memory, whereas introduction of a dominant-

negative PKMζ led to suppression (Shema et al., 2011).   

 

Our previous studies demonstrated that treatment with NGF acutely enhanced the excitability of 

isolated rat sensory neurons (Zhang et al., 2002; Zhang et al., 2012) and that intraplantar 

injection of NGF produced a significant hypersensitivity to mechanical and thermal stimulation of 

the rat’s hindpaw (Khodorova et al., 2013, 2017).  The NGF-induced augmentation of 

excitability, mechanical, and thermal sensitivity were blocked by pretreatment with mPSI.  In 
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addition, siRNA targeted to PKCζ significantly reduced the expression of PKMζ, but not that of 

either PKCζ or PKCλ/ι, and blocked the NGF-mediated increases in the excitability of sensory 

neurons (Zhang et al., 2012).  These observations indicate that PKMζ plays a key regulatory 

role in generating the heightened sensitivity resulting from exposure to NGF.  Our findings then 

suggest two possible explanations: NGF engages the translational control pathway, as has 

been suggested for long-lasting LTP in the central nervous system, or by some other 

mechanisms NGF leads to the activation of an atypical PKC in the peripheral nervous system. 

 

Experimental Procedures 

Isolation and Maintenance of Sensory Neurons 

Sensory neurons were harvested from young adult Sprague-Dawley rats (80-150 g) (Harlan 

Laboratories, Indianapolis, IN, USA).  Briefly, male rats were killed by placing them in a 

chamber that was then filled with CO2.  Dorsal root ganglia (DRG) were isolated and collected in 

a conical tube with sterilized Puck’s solution.  The tube was centrifuged for 1 min at 

approximately 2000 x g and the pellet was resuspended in 1 ml Puck’s solution containing 10 U 

of papain (Worthington, Lakewood, NJ, USA).  After 15 min incubation at 37°C, the tube was 

centrifuged at 2000 x g for 1 min and the supernatant was replaced by 1 ml F-12 medium 

containing 1 mg collagenase IA and 2.5 mg dispase II (Roche Diagnostics, Indianapolis, IN, 

USA).  The DRGs were resuspended and incubated at 37°C for 20 min.  The suspension was 

centrifuged for 1 min at 2000 x g and the supernatant was removed.  The pellet was 

resuspended in F-12 medium supplemented with 10% heat-inactivated horse serum and 30 

ng/ml NGF (Harlan Bioproducts, Indianapolis, IN, USA) and mechanically dissociated with fire-

polished glass pipette until all visible chunks of tissue disappeared.  Isolated cells were plated 

onto either plastic coverslips (electrophysiology experiments) or 6-well tissue culture plates 
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(Western blotting experiments); both surfaces were previously coated with 100 μg/ml poly-D-

lysine and 5 μg/ml laminin.  Cells were then maintained in culture in an F-12 medium 

supplemented with 30 ng/ml NGF at 37°C and 3% CO2 for either 18-24 h before 

electrophysiological recording or for 48 h before administering treatments and collecting cell 

lysates for Western blotting experiments.  All procedures were approved by the Animal Use and 

Care Committee of the Indiana University School of Medicine.  

  

Electrophysiology  

Recordings were made using the whole-cell patch-clamp technique as previously described 

(Zhang et al., 2012).  Briefly, a coverslip with sensory neurons was placed into a culture dish 

containing normal Ringer’s solution of the following composition (in mM): 140 NaCl, 5 KCl, 2 

CaCl2, 1 MgCl2, 10 HEPES and 10 glucose, with pH adjusted to 7.4 using NaOH; after 

approximately 15 min, the cover slip was transferred to the recording chamber filled with 

Ringer’s solution.  Recording pipettes were pulled from borosilicate glass tubing (Model 

G85165T-4, Warner Instruments, Hamden, CT, USA).  Recording pipettes had resistances of 2-

5 MΩ when filled with the following solution (in mM): 140 KCl, 5 MgCl2, 4 ATP, 0.3 GTP, 0.25 

CaCl2, 0.5 EGTA, (calculated free Ca
2+

 concentration of 100 nM, MaxChelator), and 10 HEPES, 

at pH 7.2 adjusted with KOH.  Whole-cell voltages were recorded with an Axopatch 200 or 

Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA, USA).  Data were acquired and 

analyzed with pCLAMP 10 (Molecular Devices).  All drugs were applied with a VC-8 bath 

perfusion system (Warner Instruments).  NGF was used at a concentration of 100 ng/ml, which 

was based on the observation that this concentration produced a significant sensitization of the 

capsaicin-gated current in small-diameter rat sensory neurons (Shu and Mendell, 1999).  In the 

current clamp experiments, the neurons were held at their resting potentials (between −45 and 
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−65 mV) and a depolarizing current ramp (1000 ms in duration) was applied.  The amplitude of 

a ramp was adjusted to produce between 2 and 4 action potentials (APs) under control 

conditions for each individual neuron and then that same ramp was used throughout the 

recording period for that particular neuron.  Voltages were filtered at 5 kHz and sampled at 2 

kHz.  At the end of each recording, the neuron was exposed to 400 nM capsaicin.  This 

neurotoxin was used to distinguish capsaicin-sensitive sensory neurons as these neurons are 

believed to transmit nociceptive information (Holzer, 1991).  However, the correlation between 

capsaicin sensitivity and neuronal identity as a nociceptor is not absolute; some nociceptive 

neurons are insensitive to capsaicin and some capsaicin-sensitive neurons are not nociceptors 

(Petruska et al., 2000).  Therefore, this agent was used to define a population of small-diameter 

sensory neurons that could serve a nociceptive function.  All results presented in this report 

were obtained from capsaicin-sensitive neurons, unless otherwise stated.  All experiments were 

performed at room temperature, ~23°C. 

 

Western Blot 

After 48 h in culture, the medium was removed from the DRG cells, each well was washed with 

1 ml  PBS (37°C), and then 1 ml of F12 medium with no additional NGF was added to each well 

for 15 min at 37°C in 3% CO2.  Either vehicle or a final concentration of 50 μg/ml cycloheximide 

was then added to the culture medium and the cells were incubated for an additional 60 min.  At 

this point, vehicle (100 μl F12 medium, no NGF) or NGF (100 μl of 1 ng/μl NGF in F12 medium) 

was added to the appropriate wells and the cells were returned to the incubator for 30 min.  The 

culture medium was then removed from the cells, the plates were placed on ice, and each well 

was then washed twice with 1 ml ice-cold PBS.  Cells were lysed with 150 μl per well of ice-cold 

RIPA lysis buffer (catalog #20-188, Millipore Corp., Billerica, MA) containing a 100-fold dilution 
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of Protease Inhibitor Cocktail Set III (catalog #539134, EMD Biosciences, San Diego, CA) and 

phosphatase inhibitors (1 mM sodium fluoride, 1 mM activated sodium orthovanidate).  Cells 

were scraped from the wells, lysates were collected into 1.5 ml tubes, and the lysates were 

sonicated (Fisher Scientific Sonic Dismembrator 550, setting 3, 2 pulses, 1 sec each pulse).  

Cell debris was removed by centrifugation at 2500 x g for 5 min at 4°C.  Supernatants were 

transferred to fresh tubes.  The total protein concentrations in the lysates were measured using 

the Bradford Method (catalog #500-0006, Protein Assay Dye Reagent, Bio-Rad Laboratories, 

Hercules, CA). 

 

Equivalent amounts of reduced, denatured protein (20 µg) were separated by electrophoresis in 

a NuPAGE® 4-12% Bis-Tris gel (catalog #NP0335BOX, Invitrogen, Carlsbad, CA) using 

NuPAGE® MES-SDS running buffer (catalog #NP0002, Invitrogen).  The separated proteins 

were then transferred from the gel to an Invitrolon PVDF membrane (catalog #LC2005, 

Invitrogen).  The membranes were blocked with 1X TBS containing 5% (w/v) non-fat dry milk for 

1 h at room temperature, with agitation.  To measure atypical PKC (aPKC) expression levels, a 

polyclonal rabbit antibody that recognizes PKCζ, PKMζ, and PKCλ/ι (sc-216, 1:500, Santa Cruz 

Biotechnology Inc., Santa Cruz, CA) was incubated in 1X TBS, 0.1% (v/v)Tween 20 and 1% 

(w/v) non-fat dry milk for 18 hs at 4°C with agitation.  These protein isoforms were 

distinguishable based on differences in their molecular weights.  Reference protein expression 

was determined using rabbit polyclonal antibody to HPRT (sc-20975, 1:500, Santa Cruz 

Biotechnology Inc., Santa Cruz, CA) and mouse monoclonal antibody to actin (catalog #MA5-

11869, ACTN05, C4, 1:2500, Thermo Scientific, Rockford, IL).  After primary antibody 

incubation, membranes were washed (3 x 10 min) with 1X TBS containing 0.1% (v/v) Tween 20, 

at room temperature, with agitation.  The membranes were then incubated with horseradish 

peroxidase-labeled goat anti-rabbit secondary antibody (sc-2004, 1:2500, Santa Cruz 
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Biotechnology Inc., Santa Cruz, CA) in TBS-Tween-milk for 1.5 h at room temperature, with 

agitation.  After washing, immunoreactive bands on the membranes were developed by 

SuperSignal™ West Dura Extended Duration Substrate (catalog #34076, Thermo Scientific, 

Rockford, IL) and visualized by exposure to CL-X Posure™ film.  The film was photographed 

with a Kodak DC290 CCD camera and the density of each band was measured using Kodak 1D 

3.6 software (Kodak Scientific Imaging Systems, New Haven, CT). The summary data are 

expressed as the density of the experimental bands normalized to the density of their respective 

HPRT bands.  Three independent experiments were conducted for statistical analysis. 

 

Behavioral Measurements of Mechanical Sensitivity 

Experiments were conducted on a total of 65 adult male Sprague-Dawley rats (240-300 g).  

Rats were housed in groups of two per cage under a 12:12 h dark:light cycle and were provided 

with food and water ad libitum.  Animals were experimentally treated and cared for in 

accordance with the Guide for the Care and Use of Laboratory Animals (Guide, 2011), using 

protocols as reviewed and approved by the Harvard Committee on Animals.  Unrestrained rats 

were placed on an elevated plastic mesh floor (28 x 17.5 cm; 9.5 x 9.5 mm openings) and 

allowed to habituate for 25-40 min before initial testing. Paw Withdrawal Frequency to 

mechanical stimulation was determined using a 10 or 15 g calibrated von Frey hair (VFH) 

applied perpendicularly to the plantar surface of the hind paw through the spacing in the mesh 

floor.  The VFH was applied 10 times, each for 3 sec maximum, or until paw withdrawal.  To 

minimize stress and to obtain consistent responsiveness to the force, the rats were habituated 

and tested on these same mesh racks over 5-6 days before any test substances were injected 

(training period).  Four rats were tested together in any single test session.  Each rat in any 

single session received the same treatment, and the tester was not blinded to the treatment.  
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Withdrawal responses were registered initially on the ipsilateral (NGF-injected) paw and then on 

the contralateral paw.  The number of paw withdrawals, n, occurring in response to a total of 10 

stimuli with any single VFH force was used to assess mechanical sensitivity, and reported as 

the “Response Efficiency” (RE). 

 

In experiments designed to test the preventive activity of translational inhibitors, cycloheximide 

(n=11), rapamycin (n=12), or their respective vehicle (n=6, for each group, n=12 total), alone or 

with NGF, were injected subcutaneously (s.c.) in a 10 μl volume (with 4 μg NGF injected in 20 

μl), into the mid-plantar hind paw, 1 cm distal from the heel.  Injections were performed under 

brief general anesthesia from inhalation of the rapidly reversible agent sevoflurane (Abbott 

Labs, N. Chicago, IL, USA).  After anesthesia was discontinued, the righting reflex recovered in 

<30 sec; 5-10 min later “normal” baseline nocifensive responses could be assessed.  To test the 

ability of specific protein synthesis inhibitors to prevent the development of NGF-induced 

hyperalgesia, the following injection protocols were used.  The first injection of cycloheximide 

occurred 1 h prior to the NGF injection, and the second injection was mixed with NGF.  

Rapamycin was injected once, 0.5 h prior to NGF with concentrations and doses indicated in the 

Results and figure legends.  In control experiments, NGF was injected 1 h after the injection of 

the vehicle used for cycloheximide (PBS, 10 μl), or 0.5 h after the injection of the vehicle used 

for rapamycin (DMSO, 10 μl).  In experiments intended to reverse an established, long-lasting 

hyperalgesia, rapamycin (10 μl, n=9) or vehicle, (DMSO, 10 μl, n=8) was injected 3 days after 

paw injection of 3-5 μg of NGF.  The role of aPKCs in NGF-induced hypersensitivity was tested 

by intraplantar injection of  mPSI (40 μg, 20 μl, n=11) or its inactive, scrambled analogue, (scr-

mPSI, n=8) 3 days after 4 μg of NGF. 
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Data Analysis- In vitro experiments 

Results are presented as the means ± standard error of the mean (SEM).  Statistical differences 

between the controls and those obtained under various treatment conditions were determined 

by either an ANOVA or a repeated measures (RM) ANOVA when appropriate. When a 

significant difference was obtained, post hoc analyses were performed using a Holm-Sidak all-

pairs test; the degrees of freedom (df) and the sum of squares (ss) are reported.  If the data set 

failed the normality test, either a Kruskal-Wallis one-way ANOVA on ranks was performed, 

followed by a Tukey or a Dunn’s all pairwise test yielding an H value and the df or a Friedman 

repeated measures ANOVA followed by a Tukey all pairwise test yielding a Chi square value Χ
2
 

and the df.  The df and H or Χ
2
 are reported.  Results were considered statistically significant 

when P≤0.05 (SigmaStat 3.5 Software). 

 

In vivo experiments 

Behavioral results are graphically presented as medians ± 25th  and 75th percentile (boxplot) and  

10th  and 90th percentiles (whiskers).  Statistical analysis applied Kruskal-Wallis tests followed by 

Wilcoxon Rank Sum tests for pairwise comparisons.  Analyses  by Kruskal-Wallis are reported 

with the value of H, degrees of freedom (df), and probability of significance (P) values for all the 

groups being compared; pair-wise comparisons by the Wilcoxon Rank Sum test, are reported as 

the number of samples in the compared groups and the exact P values.  Two comparisons were 

made: 1. Response Efficiency after injections of NGF compared to Response Efficiency during 

the Baseline, pre-injection period, for the different translational inhibitor tests of prevention.  2. 

Comparisons, at the same time point, of Response Efficiency in vehicle-injected rats with those 

of inhibitor-injected rats.  The effectiveness of an inhibitor to reverse existing hypersensitivity 

was quantified as follows; the increase in paw response efficiency on post-NGF day 3 (D3) 
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compared to baseline was defined as Maximum Possible Effect (MPE) of NGF.  Suppression of 

RE by the inhibitors on day X after NGF injection (DX) was expressed as %MPE, where %MPE 

= [(RE@DX – RE@D3) / (RE@D3 – baseline RE)] x 100. 

 

Chemicals- In vitro experiments 

F-12 Nutrient Mixture (catalog #21700-075, Gibco) was supplemented with the following per 

liter: 1.18 g NaHCO3 (catalog #S6014, Sigma), 1X (2 mM) L-glutamine (catalog #25030-081, 

Gibco), 50 units penicillin-50 mg/ml streptomycin (catalog #15070-063, Gibco), 10% heat-

inactivated horse serum (catalog #26050-088, Gibco), 9 μg/ml 5-fluoro-2'-deoyuridine (catalog 

#F-0503, Sigma), and 21 μg/ml uridine (catalog #U-3750, Sigma).  All other chemicals were 

obtained from Sigma-Aldrich (St. Louis, MO, USA).  Actinomycin D and 4EGI-1 were dissolved 

in DMSO.  Capsaicin, cycloheximide, and rapamycin were dissolved in 1-methyl-2-pyrrolidinone 

(MPL). The MPL stock solutions were then diluted with Ringer’s solution to yield the appropriate 

concentrations. The vehicle, MPL was typically used at 1,000- to 5,000-fold dilutions.  Our 

earlier studies demonstrated that MPL does not affect the potassium or sodium currents in the 

DRG sensory neurons (Zhang et al., 2002). 

 

 In vivo experiments 

NGF-β (rat) (Sigma-Aldrich, St. Louis MO, USA, or [556-NG-100/CF] R&D Systems, 

Minneapolis MN, USA) was made as a stock solution (100 ng/μl or 200 ng/μl in Ca
2+ + Mg

2+ free 

PBS, pH 7.4) and stored in 40 μl aliquots at –80°C.  Prior to the injection, NGF stock aliquots 

were diluted (1:1) in PBS or mixed with the cycloheximide stock solution (for co-injections) to the 

indicated final concentration of 50-200 ng/μl.  Cycloheximide (Sigma-Aldrich, St. Louis MO, 
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USA) was dissolved in PBS as a 20 mM stock solution and stored in 40 μl aliquots at –80°C; 

stock aliquots of cycloheximide were then diluted (1:1) in PBS.  Rapamycin (Enzo Life Sciences, 

Farmingdale, NY) was dissolved in DMSO as a 20 mM  stock solution, stored in aliquots at –80° 

C, and then diluted to 10 mM in DMSO before hind paw injection.  The atypical PKC 

pseudosubstrate inhibitor, mPSI (Enzo Life Sciences) was dissolved first in dH2O to 10 μg/μl, 

then diluted 1:5 in PBS and stored in 100 μl aliquots at −80°C.  The same procedure was used 

for the scrambled pseudosubstrate inhibitor, a control substance for mPSI (Tocris/R&D 

Systems, Minneapolis, MN). 

 

RESULTS  

Inhibitors of translation, but not transcription, block the NGF-induced increase in excitability 

Our previous studies demonstrated that both the NGF-mediated increase in excitability of 

sensory neurons and behaviorally assessed mechano- and thermal hypersensitivity were linked 

to the activity of the atypical PKC variant, PKMζ (Zhang et al., 2012; Khodorova et al., 2013, 

2017).  To determine whether this increased excitability was produced by protein synthesis, 

inhibitors of transcription or translation were used.  As illustrated in Fig. 1A, in either untreated 

or vehicle-treated isolated sensory neurons (combined data), exposure to 100 ng/ml NGF 

produced a significant time-dependent increase in the number of action potentials (APs) evoked 

by a depolarizing ramp of current (df=9, ss=402.9, n=10, P≤0.001).  The untreated and vehicle-

treated groups have been combined into a single control group since the effects of NGF were 

not different (Mann Whitney U(4,6)=14.0, n=10, P≥0.76).  In this combined data, there were no 

differences between the 6, 10, and 20 min treatments with NGF.  In a separate series of 

experiments, a 30 min pretreatment with 10 μM actinomycin-D, an inhibitor of transcription 

(Kersten et al., 1960; Goldberg et al., 1962), failed to alter the capacity of NGF to increase 
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neuronal excitability (Fig. 1B, H=19.2, df=5, n=7-9, P≤0.05), producing a sensitization of AP 

firing that was similar to that found in untreated/vehicle-treated neurons.  There were no 

differences between the 6, 10, and 20 min treatments with NGF.  By contrast, pretreatment with 

inhibitors of translation, either 60 μM cycloheximide (30 min, panel C, df=6, ss=17.5, n=7, 

P=0.07) or 500 nM rapamycin (60 min, panel D, df=7, ss=62.6, n=8, P=0.12), blocked the 

increase in excitability produced by NGF.  To corroborate the intended effects of rapamycin and 

cycloheximide, as they are known to have other potential effects, the small molecule inhibitor 

4EGI-1 was used.  This agent specifically blocks the interaction between the factors eIF4E and 

eIF4G and thereby inhibits cap-dependent translation; in Jurkat cells the IC50 for this blockage 

was 25-50 μM (Moerke et al., 2007).  As shown in Fig. 3E, a 30 min pretreatment with 30 μM 

4EGI-1 blocked the NGF-induced increase in excitability (df=6, ss=36.3, n=7, P=0.35).   

 

A recent report demonstrated that high-frequency stimulation of the CA3 Schaffer collateral-CA1 

synapse in hippocampal slices produced a rapid dephosphorylation of serine 406 in eIF4B.  This 

dephosphorylation was associated with increased levels of PKMζ protein; both the 

dephosphorylation and the increased protein were sensitive to okadaic acid, an inhibitor of 

protein phosphatase 1 and 2A (Eom et al., 2014).  Based on this finding, we measured the 

effects of okadaic acid on the capacity of NGF to enhance the excitability of sensory neurons.  

As shown in Fig. 1F, a 30 min pretreatment with 1 μM okadaic acid completely blocked the 

increase in AP firing produced by NGF (df=4, ss=3.1, n=7-9, P=0.75).  In parallel recordings 

from sensory neurons isolated in the same tissue harvests, NGF significantly increased AP 

firing by about 3-fold (control 3.2 ± 0.2 APs vs. 10 min NGF 9.6 ± 0.7 APs, df=4, ss=5.3, n=5, 

P≤0.001, data not shown).  These results are consistent with the observations in hippocampal 

slices.  Collectively, these results demonstrate that the ability of NGF to augment the firing of 

APs in sensory neurons depends on translational but not transcriptional activity. 
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NGF augments the levels of PKMζ protein 

The above results indicate that the sensitization produced by NGF requires protein synthesis.  

Such a finding raises the question as to whether this results in increased levels of PKMζ protein.  

Western blotting and densitometry of extracts from isolated sensory neurons were used to 

measure the changes in PKMζ protein in the absence or presence of NGF.  We previously 

identified a band at ~49 kDa as PKMζ (Zhang et al., 2012) and this molecular weight is similar 

to that reported for PKMζ by Sacktor’s laboratory (Sacktor et al., 1993; Hernandez et al., 2003).  

Film exposures of 1 s yielded measurable bands for the other isoforms of atypical PKCs, 

however this failed to yield a detectable band for PKMζ (data not shown).  Therefore, longer 

exposures were used (typically 20-30 s) to assess the levels of PKMζ.  A representative 

Western blot using the longer exposure time (see Fig. 2A) demonstrates that a 30 min treatment 

with 100 ng/ml NGF increased the density of the band at ~49 kDa.  This finding is consistent 

with the electrophysiological results reported above.  Pretreatment for 60 min with 50 μg/ml (178 

μM) cycloheximide, an inhibitor of the elongation phase of translation, reduced the amount of 

PKMζ protein (lane CHX+ NGF+) compared to NGF alone (lane CHX− NGF+).  The results from 

three separate Western blots are summarized in Fig. 2B wherein the measured density values 

were normalized to the values of their respective untreated controls.  A 30 min exposure to 100 

ng/ml NGF produced a significant increase (1.86 ± 0.30 fold, df=2, ss=0.5, n=3 tissue harvests, 

P≤0.05) in the amount of PKMζ protein compared to the untreated controls.  Treatment with 

cycloheximide blocked the NGF-induced increase wherein the measured values for PKMζ 

protein were reduced to 1.30 ± 0.26.  Cycloheximide by itself had no effect on the levels of 

PKMζ.  Our previous work demonstrated that full length PKCζ and PKCλ/ι proteins have 

molecular weights of approximately 75 and 62 kDa, respectively (Zhang et al., 2012).   Although 

PKMζ could not be detected at the 1 s exposures, band densities of the other atypical PKCs 
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were measured.  In the current studies, NGF had no significant effect on the expression levels 

of PKCζ (1.39 ± 0.16 normalized to their respective untreated controls 1.0, df=2, ss=0.3, n=3 

tissue harvests, P=0.12) or PKCλ/ι (1.19 ± 0.11, H=5.2, df=2, n=3 tissue harvests, P=0.16).  

Thus, these results indicate that NGF selectively increases the translational expression of PKMζ 

in isolated sensory neurons and that this increase is blocked by the protein synthesis inhibitor 

cycloheximide. 

 

Translation inhibitors block the NGF-induced mechanical hypersensitivity 

The systemic injection of NGF (Lewin et al., 1993) or its intraplantar injection into the hindpaw of 

a rat produces a hypersensitivity to both thermal and mechanical stimulation (Woolf et al., 1994; 

Andreev et al., 1995, respectively).  Our previous studies demonstrated that pretreatment with a 

blocking antibody to the p75 neurotrophin receptor prevented the NGF-induced increase in 

neuronal excitability (Zhang and Nicol, 2004) as well as the mechanical hypersensitivity 

resulting from the intraplantar injection of either NGF or proNGF (Khodorova et al., 2013).  

These results indicate that NGF can enhance neuronal sensitivity in vivo, an effect that may 

depend on translational control.  To explore this possibility, the inhibitors of translation, 

cycloheximide or rapamycin, were injected into the intraplantar surface of the rat’s hindpaw prior 

to the injection of NGF.  As illustrated in Fig. 3, both cycloheximide and rapamycin delayed the 

development of NGF-induced mechanical hypersensitivity.  (There being no difference among 

the baseline, pre-injection Response Efficiency in the 3 treatment groups (H=0.72, df=2, 

P=0.70), these were merged to give a single baseline value; n=29).  In vehicle control animals 

(n=6), where DMSO was injected 0.5 h before NGF (500 ng/10 μl), a significant increase in the 

responsiveness to the 15 g force over the baseline values (n=29) was detected at all test times 

after NGF (H=27.5, df=4, P≤0.0001); at 0.5 h  P=0.006, at 1 h P=0.006, at 3.5 h P=0.001, and at 
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22 h P=0.001.  In the untreated control animals, the single injection of 500 ng of NGF induced a 

mechanical hypersensitivity that slowly declined between days 1 and 4, and achieved a full 

recovery on day 5 (data not shown).  Injection of the vehicle alone, whether it be aqueous buffer 

(PBS) or DMSO, had no effect on paw responsiveness over one day, in the current experiments 

(data not shown), and in many previously published studies (e.g., Khodorova et al., 2013).   

 

In contrast to the robust increase in R.E. for the vehicle control group, for  the group where 

cycloheximide was injected 1 h before and then co-injected with NGF (total dose 200 nmol/paw, 

each injection 10 mM, n=11), the increase in mechanical sensitivity (H=17.7, df=4, P=0.001) 

was blocked at both 0.5 h (P=0.98 vs. baseline, n=29) and 1 h (P=0.82 vs. baseline) but was 

significant at 3.5 h (P=0.03 vs. baseline) and 22 h (P=0.0002) after NGF.  Similarly, when 

rapamycin (100 nmol/paw, n=12) was injected 0.5 h prior to NGF (H=22.01, df=4, P=0.0002),  

no significant increase in mechanical sensitivity occurred at 0.5 h (P=0.41), 1 h (P=0.08), or 3.5 

h (P=0.16, all vs. baseline, n=29).  In a parallel analysis, comparing the responses at each time 

between the vehicle control group and the two different Inhibitor treatment groups, at baseline 

there was no difference (as noted above).  At 0.5 h, (H=10.31, df=2, P=0.006); cycloheximide 

(n=11) vs. vehicle (n=6), P=0.006; rapamycin (n=12) vs. vehicle (n=6), P=0.005. At 1 h, 

(H=6.52, df=2, P=0.039), cycloheximide vs. vehicle P=0.02, rapamycin vs. vehicle P=0.04. For 

both cycloheximide and rapamycin treatments, the mechanical sensitivities had reached the 

vehicle control values when measured at 22 h (H=0.70, df=2, P=0.70), for cycloheximide vs. 

vehicle P=0.46 and for rapamycin vs. vehicle P=0.49).  These results demonstrate that inhibition 

of translation can delay the increase in mechanical sensitivity produced by NGF, although the 

suppressive effects are short-lived.  The time course of this suppression may depend on the 

metabolic stability of these compounds.  For example, in an in vitro study, the half-life of 

rapamycin in rat plasma was approximately 2.2 h (Ferron and Jusko, 1998). 
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Inhibitors of translation or atypical PKCs reverse the sustained hypersensitivity produced by 

NGF 

Intraplantar injection of higher doses of NGF (1-5 μg) produced a mechanical hypersensitivity 

that persisted for at least 4 days after the initial injection.  As shown in Fig. 4A, injection of NGF 

(4 μg/20 μl) produced a sustained hypersensitivity to the 15 g VFH stimulus over this period, 

with a slight fade of effect on D5 48 h after DMSO vehicle injection (H=26.9, df=5, n=8, 

P≤0.0001).  There were no significant differences in the levels of NGF-induced mechanical 

hypersensitivity between the 1, 3, and 4 μg/20 μl injections (a Χ
2
 analysis comparing the REs 

from these three doses of NGF at D3 (72 h) gave P=0.543); therefore, these results have been 

combined in Fig. 4A.  With this same protocol for producing sustained mechanical 

hypersensitivity, another group of rats (n=9) received a single injection of rapamycin (10 mM, 10 

μl) 3 days after an injection of 4 μg NGF (for all test times in this group H=25.8, df=5, P≤0.001).  

Mechanical hypersensitivity was reduced at 24 h after rapamycin compared to the value one 

day previously (P=0.01, D4 vs. D3, 4 h after rapamycin).  The rapamycin-diminished response, 

at 24h, was still above the pre-NGF baseline value (P=0.01), showing that a complete reversal 

of NGF-induced hypersensitivity was not achieved with this dose of rapamycin.  Furthermore, 

the response had not changed at 1.5 h after rapamycin (P=0.53 vs. D3, before rapamycin) nor 

at 4.5 h after rapamycin (P=0.07 vs. D3, before rapamycin); it appears that the effects of the 

inhibitor were not significant over the first 4 h after its injection, but were so by 1 day.  By 48 h 

after rapamycin (D5), mechanical sensitivity had returned to its pre-rapamycin level (see Fig. 

4B, P=0.20, D5 vs. D3 before rapamycin). 
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These changes in mechanical hypersensitivity after the injection of rapamycin were then 

normalized to their maximal possible effect (MPE), measured at D3 (see Procedures section for 

details).  As shown in Fig. 4C, at 24 h after the injection of rapamycin there was a significant 

reduction (approximately 40% MPE)  in normalized  hypersensitivity (H=12.2, df=2, P=0.002 for 

all 3 times, P=0.002 for D4 24 h vs. D3, 4 h after rapamycin, all n=9).  By 48 h (D5) after 

rapamycin the mechanical hypersensitivity had returned to the value measured at D3 (P=0.57).  

Although these effects were transient, the results suggest that continued mRNA translation is 

important in maintaining the hypersensitivity after exposure to NGF. 

 

We previously showed that treatment with mPSI, an inhibitor of the atypical PKCs, prevented 

the development of both the NGF-induced increase in neuronal excitability in vitro  (Zhang et al., 

2012) and the mechano-hypersensitivity in vivo (Khodorova et al., 2013).  These findings raise 

the question of whether exposure to mPSI could reduce mechano-hypersensitivity during the 

sustained period after higher NGF.  Following a similar protocol as described above for tests of 

rapamycin on sustained NGF-induced mechanical hypersensitivity, we found that intraplantar 

injection of mPSI on D3 (40 μg) after NGF resulted in a transient reduction in R.E. (H=18.4, 

df=4, P=0.001), with a significant decrease in the hypersensitivity measured 24 h later (n=11, 

P=0.016, D3 vs. D4), falling to levels that were not different from baseline (n=11, P=0.10) (see 

Fig. 5A).  Like the findings for rapamycin, the sensitivity returned to the pre-mPSI values 24 h 

later (P=0.73, D5 vs, D3).  In contrast, injection of the same dose of a scrambled analogue of 

mPSI (scr-mPSI) that has no inhibitory effect on aPKCs, had no effect at D4 (P=0.65, D4 vs. 

D3; Fig. 5A).  After scr-mPSI, responsiveness remained significantly above baseline for the next 

3 days (H=25.5, df=4, P≤0.0001) (Fig. 5A).  These results were then normalized by comparing 

the responsiveness after injected substances to the hypersensitivity measured at D3, before 

substance injection but after NGF, in each respective animal.  As shown in Fig. 5B, mPSI 
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caused a significant drop in the normalized %MPE responsiveness (H=7.8, df=2, P=0.02).  At 

24 h after the injection of mPSI the hypersensitivity was significantly reduced, by ~66% of the 

MPE (P=0.005), whereas after the injection of scr-mPSI there was no change in the 

hypersensitivity relative to D3 (P=0.31).  At 48 h (D5) after inhibitor injection, the mechanical 

hypersensitivities for those rats receiving the mPSI injection returned to their pre-injection 

values (P=0.73).  Taken together, these findings demonstrate that the NGF-induced mechanical 

hypersensitivity in vivo can be delayed by pretreatment with rapamycin or cycloheximide and 

that established hypersensitivity can be transiently reversed by either rapamycin or mPSI.  

These results indicate that translational synthesis in the periphery plays a critical role in 

generating as well as maintaining the heightened mechanical sensitivity produced by NGF, and 

suggest that PKMζ is a likely candidate for the synthesized critical mediator.  

 

DISCUSSION 

In this report we demonstrate that synthesis of a signaling protein is essential for the acute 

mechanical hypersensitivity caused by NGF, and for the changes in sensory neuron excitability 

that underlay that hypersensitivity.  Similarly, the protein levels of PKMζ in vitro were elevated 

after NGF treatment, which was blocked by pretreatment with an inhibitor of translation, 

cycloheximide.  The enhanced AP firing that resulted after NGF exposure was also blocked by 

inhibitors of translation, but not by an inhibitor of transcription.  Intraplantar injection of NGF 

produced a rapid increase in the local mechanical sensitivity that was maintained for 4-5 days.  

The onset of this NGF-induced hypersensitivity was delayed by pretreatment with either 

rapamycin or cycloheximide.  Interestingly, the maintained mechanical hypersensitivity could be 

transiently reversed by injection of either rapamycin or an inhibitor (mPSI) of atypical PKCs.  

Although our results indicate that NGF leads to the persistent on-going synthesis of a mediator 
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that promotes hypersensitivity (which we believe to be PKMζ), the transient action of the 

translation inhibitors might suggest that the half-life or stability of this mediator is limited, 

whereas the coding mRNA is present before NGF stimulation and then becomes persistently 

active.  Thus, the in vitro results demonstrate that NGF produces a rapid increase in the 

translational synthesis of PKMζ.  Elevated levels of this atypical PKC result in the enhanced AP 

firing of isolated small diameter sensory neurons as well as the heightened mechanical 

sensitivity of the hindpaw.  These observations would suggest that NGF when applied to either 

the neuronal cell bodies or the distal terminals of sensory (nociceptive) afferents leads to the 

acute translation of PKMζ.   

 

As noted above, the NGF-mediated in vivo mechanical sensitivity is significantly increased after 

just 30 min of exposure.  Changes in mechanical sensitivity in this amount of time are much too 

rapid to be accounted for by the retrograde transport of an NGF-induced signal back to the 

DRG.  Consistent with this idea, Stoeckel et al. (1975) showed that upon injection of 
125

I-NGF 

into the forepaw of a rat, it took at least 6 h to detect a significant increase in labeled NGF in the 

cervical (C6/7) DRG.  Maximal levels were attained between 11 and 16 h.  Therefore, these 

results for the slow retrograde movement of NGF to the DRG are incompatible with the rapid 

increase in mechanical hypersensitivity observed in our study.  Thus, the rapid enhancement of 

mechanical sensitivity is consistent with the idea of localized translation in those mechano-

sensitive fibers innervating the hind paw skin. 

 

The key findings of this study are also consistent with our previous studies.  In isolated sensory 

neurons, pretreatment with mPSI, but not bisindolylmaleimide I (an inhibitor of conventional and 

novel PKC isoforms), completely blocked the NGF-induced increase in evoked AP firing, 
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suggesting that an atypical PKC played a key role in augmenting the excitability (Zhang et al., 

2012).  Treatment with siRNAs targeted to the atypical PKCs decreased both the mRNA and 

protein levels for the PKMζ subtype, but not the full length PKCζ or PKCλ/ι isoforms of the 

atypical PKCs.  Functionally, these siRNAs also blocked the enhanced AP firing produced by 

NGF.  Internal perfusion of neurons with either recombinant PKCζ or PKCλ/ι via the recording 

pipette produced a significant increase in AP firing, which likely results from the high degree of 

homology in the catalytic domains for the atypical PKCs.  In support of these in vitro findings, 

pre-injection of mPSI into the intraplantar surface significantly reduced the mechanical 

hypersensitivity resulting from a subsequent intraplantar injection of NGF (Khodorova et al., 

2013). 

 

PKMζ may play a causal role in regulating the level of neuronal sensitivity.  Previous studies 

have used the pseudosubstrate inhibitor to explore the role of the atypical PKCs.  It is important 

to note that this pseudosubstrate inhibitor (sometimes referred to as ZIP, zeta inhibitory peptide) 

lacks the selectivity to discriminate between the different isoforms of the atypical PKCs because 

of the high degree of homology in the pseudosubstrate domain (Selbie et al., 1993; Akimoto et 

al., 1994; Hirai and Chida, 2003).  Using an interleukin-6-induced model of persistent 

sensitization, Asiedu et al. (2011) showed that intrathecal injection of ZIP greatly accelerated 

the recovery of the resulting mechanical allodynia for both the acute IL-6-mediated allodynia as 

well as the long-lasting allodynia produced by PGE2.  To further examine the role of atypical 

PKCs in promoting this persistent sensitization, a lenti-viral expression of a constitutively active 

form of PKCζ in the dorsal horn of the spinal cord produced a sensitization that lasted for 

approximately 6 days (Asiedu et al., 2011).  Two additional studies demonstrated that 

intrathecal injection of ZIP suppressed the second phase of the pain response evoked by 

intraplantar injection of formalin (Marchand et al., 2011; Laferrière et al., 2011).  These results 
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indicate that an atypical PKC (although the specific isoform was not resolved) plays a critical 

role in the heightened sensitivity that results from a variety of inflammatory insults.  However, 

since substances injected intrathecally can diffuse down the spinal roots to the DRG as well as 

enter the spinal cord, it is unclear if the critical atypical PKC is expressed in primary afferents or 

in spinal neurons (or glia). 

 

Prior studies established that a long-lasting form of synaptic plasticity depends on the synthesis 

of new protein (late-phase long-term potentiation, L-LTP)(reviewed in Kelleher et al., 2004; 

Costa-Mattioli et al., 2009).  In addition, L-LTP can be produced by exposure to a variety of 

agonists, in particular, brain-derived neurotrophic factor (BDNF).  In recordings from the 

Schaffer collaterall-CA1 pyramidal cell synapse of the adult rat hippocampus, exposure to 

BDNF elicited a dramatic increase in synaptic transmission/strength that was blocked by 

translational inhibitors, such as cycloheximide or rapamycin (Kang and Schuman, 1996; Tang et 

al., 2002).  In cortical neurons isolated from E18/19 rat embryos, exposure to BDNF generated 

a rapid increase (within 30 min) in protein synthesis as measured by the incorporation of 35S-

methionine (Takei et al., 2001), which was blocked by treatment with either the PI3K inhibitor 

LY249002 or rapamycin, but not the transcriptional inhibitor actinomycin D.  These 

pharmacological results are similar to our previous findings that demonstrated that the NGF-

induced sensitization of AP firing was prevented by the inhibitor of PI3K, but not that of MEK 

(Zhang et al., 2012), which suggested that a NGF-PI3K pathway is essential for enhancing 

neuronal excitability.  Taken together with our current observations, these results would indicate 

that NGF augments neuronal excitability through a PI3K-mediated pathway that depends on the 

translation of newly synthesized protein. 
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Earlier reports indicated that translation plays a key role in regulating the extent of the pain 

response after either inflammatory insults or neuropathic nerve injury.  The formalin test is a 

commonly used model of inflammatory pain wherein the secondary response, which is believed 

to be mediated by sensitization of nociceptive spinal cord pathways, was suppressed in a dose-

dependent manner by intraperitoneal injection of cycloheximide (Hou et al., 1997).  Later studies 

showed that application of rapamycin by either intrathecal or intraplantar injection also 

suppressed this secondary response, implying important regulation by the mTOR pathway 

(Price et al., 2007).  In addition, components of the mTOR pathway were localized to A-type 

nerve fibers found in the skin, many of which co-expressed N52, a marker for myelinated fibers 

(Jiménez-Díaz et al., 2008); in electromyographic recordings these same authors reported that 

rapamycin suppressed the secondary mechanical hyperalgesia (thought to be mediated by A-

type fibers) resulting from the cutaneous injection of capsaicin.  In vivo electrophysiological 

recordings from wide dynamic range spinal neurons showed that increased neuronal activity 

associated with the secondary response to formalin was blocked by pretreatment with 

rapamycin (Asante et al., 2009).  This same group detected phosphorylated S6 kinase, a key 

kinase in mTOR-mediated translation, in the dorsal root ganglia (Asante et al., 2010).  In 

support of our findings, NGF exposure (15 min duration) of dorsal root ganglia neurons isolated 

from adult mice resulted in the phosphorylation of serine-2448 of mTOR, 4EBP, eIF4E, eIF4G, 

and AKT (Melemedjian et al., 2010).  Together, IL-6 and NGF resulted in increased protein 

synthesis that was blocked by a 30 min pretreatment with 500 nM rapamycin or the inhibitor of 

eIF4F complex formation, 4EGI-1 (Melemedjian et al., 2010).    

 

In neurons, a key tenet of activity-dependent modulation of translation is that the specific 

mRNAs are properly localized in the dendritic fields.  Using in situ hybridization, the mRNA for 

PKMζ was localized in both the cell bodies and the dendrites of hippocampal and sympathetic 
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neurons grown in culture (Muslimov et al., 2004); these authors found that two targeting 

elements were required to traffic PKMζ mRNA to the dendritic compartment.  Interestingly, BC1 

RNA, a repressor of translation initiation, can become co-localized with PKMζ mRNA, 

suggesting that there are trans-acting factors that can modulate localization of the PKMζ 

transcript.  In addition, it was suggested that heterogeneous nuclear ribonucleoprotein A2 

(hnRNP A2) also plays a key role since an antisense oligonucleotide targeted to hnRNP A2 

significantly reduced the amount of PKMζ mRNA delivery to the neuronal dendrites (Muslimov 

et al., 2011).  Recent work demonstrated that the ability of BC1 RNA to repress translation 

depends on the phosphorylation state of serine 406 of eIF4B (Eom et al., 2014).  In 

hippocampal slices, high-frequency stimulation of the CA3 Schaffer collateral-CA1 synapse 

resulted in a rapid dephosphorylation of serine 406 in eIF4B that was associated with increased 

levels of PKMζ protein; both events were sensitive to okadaic acid (Eom et al., 2014).  These 

findings suggest that that phosphorylation of eIF4B represses translation whereas 

dephosphorylation of this serine initiates translation, leading to an “on-demand” synthesis of key 

neuronal proteins.  It is unknown whether this type of translational control is involved in the 

sensitization of sensory neurons resulting from exposure to pro-inflammatory mediators, such 

as NGF. 

 

Conclusions 

We demonstrate that NGF leads to the synthesis of the atypical PKC, PKMζ, and that this 

molecule plays a critical role in regulating the excitability of isolated sensory neurons as well as 

the behavioral sensitivity to mechanical stimulation.  The maintained mechanical 

hypersensitivity produced by NGF could be transiently reversed by inhibition of either translation 

or atypical PKCs.  These findings suggest that the ongoing translational synthesis of PKMζ 
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plays a critical role in the generation as well as the maintenance of the heightened mechano-

sensitivity produced by NGF.   

 

Acknowledgement 

These studies were conducted in a facility constructed with support from Research Facilities 

Improvement Program Grant Number C06 RR015481-01 from the National Center for Research 

Resources, NIH.  These studies were supported by NIH NINDS NS078173 (GDN) and NIH NCI 

CA080153 (GS).  Thanks to Mahyar Heydarpour, Ph.D., for assistance with the statistical 

analysis of the behavioral data. 

 

 

Author contributions 

JK helped design and performed/analyzed/ interpreted the biochemical/molecular studies; 

assisted in writing the manuscript.  YHZ performed the electrophysiology studies.  AK performed 

and analyzed the behavioral studies.  GS designed, analyzed, interpreted, and wrote the results 

for the behavioral studies. GDN designed the study, analyzed and interpreted results, and wrote 

the manuscript.  All authors approved the final version of the manuscript. 

REFERENCES 

Akimoto K, Mizuno K, Osada S, Hirai S, Tanuma S, Suzuki K, Ohno S (1994) A new member of 

the third class in the protein kinase C family, PKC lambda, expressed dominantly in an 

undifferentiated mouse embryonal carcinoma cell line and also in many tissues and cells. J Biol 

Chem 269:12677-12683. 



  

28 
 

Andreev NYu, Dimitrieva N, Koltzenburg M, McMahon SB (1995) Peripheral administration of 

nerve growth factor in the adult rat produces a thermal hyperalgesia that requires the presence 

of sympathetic post-ganglionic neurones. Pain 63:109-115. 

Asante CO, Wallace VC, Dickenson AH (2009) Formalin-induced behavioural hypersensitivity 

and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level. Mol 

Pain 5:27. 

Asante CO, Wallace VC, Dickenson AH (2010) Mammalian target of rapamycin signaling in the 

spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with 

neuropathy in the rat. J Pain 11:1356-1367. 

Asiedu MN, Tillu DV, Melemedjian OK, Shy A, Sanoja R, Bodell B, Ghosh S, Porreca F, Price 

TJ (2011) Spinal protein kinase M ζ underlies the maintenance mechanism of persistent 

nociceptive sensitization. J Neurosci 31:6646-6653. 

Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N (1996) Rapamycin blocks the  

phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 15:658-

664. 

Boyle MD, Lawman MJ, Gee AP, Young M (1985) Nerve growth factor: a chemotactic factor for 

polymorphonuclear leukocytes in vivo. J Immunol 134:564-568.  

Brodie C, Gelfand EW (1992) Functional nerve growth factor receptors on human B 

lymphocytes. Interaction with IL-2. J Immunol 148:3492-3497.  

Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A 

mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756-758. 



  

29 
 

Bruni A, Bigon E, Boarato E, Mietto L, Leon A, Toffano G (1982) Interaction between nerve 

growth factor and lysophosphatidylserine on rat peritoneal mast cells. FEBS Lett 138:190-192. 

Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N (2009) Translational control of long-lasting 

synaptic plasticity and memory. Neuron 61:10-26. 

Dubuisson D, Dennis SG (1977) The formalin test: a quantitative study of the analgesic effects 

of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4:161-174. 

Ehrhard PB, Erb P, Graumann U, Otten U (1993) Expression of nerve growth factor and nerve 

growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc Natl 

Acad Sci U.S.A. 90:10984-10988.  

Eom T, Muslimov IA, Tsokas P, Berardi V, Zhong J, Sacktor TC, Tiedge H (2014) Neuronal BC 

RNAs cooperate with eIF4B to mediate activity-dependent translational control. J Cell Biol 

207:237-252. 

Ferron GM, Jusko WJ (1998) Species differences in sirolimus stability in humans, rabbits, and 

rats. Drug Metab Dispos 26:83-84. 

Gee AP, Boyle MD, Munger KL, Lawman MJ, Young M (1983) Nerve growth factor: stimulation 

of polymorphonuclear leukocyte chemotaxis in vitro. Proc Natl Acad Sci U.S.A 80:7215-7218.  

Goldberg IH, Rabinowitz M, Reich E (1962) Basis of actinomycin action. I. DNA binding and 

inhibition of RNA-polymerase synthetic reactions by actinomycin. Proc Natl Acad Sci U.S.A. 

48:2094-2101. 

Hernandez AI, Blace N, Crary JF, Serrano PA, Leitges M, Libien JM,  Weinstein G, 

Tcherapanov A, Sacktor TC (2003) Protein kinase M zeta synthesis from a brain mRNA 



  

30 
 

encoding an independent protein kinase C zeta catalytic domain. Implications for  the molecular 

mechanism of memory. J Biol Chem 278:40305-40316. 

Hirai T, Chida K (2003) Protein kinase Czeta (PKCzeta): activation mechanisms and cellular 

functions. J Biochem 133:1-7.  

Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin 

sensory neurons. Pharmacol Rev 43:143-201. 

Horigome K, Pryor JC, Bullock ED, Johnson EM Jr (1993) Mediator release from mast cells by 

nerve growth factor. Neurotrophin specificity and receptor mediation. J Biol Chem 268:14881-

14887.  

Hou WY, Shyu BC, Chen TM, Shieh JY, Sun WZ (1997) Protein synthesis inhibitor 

cycloheximide dose-dependently decreases formalin-induced c-Fos protein and behavioral 

hyperalgesia in rats. Neurosci Lett 227:99-102. 

Jiménez-Díaz L, Géranton SM, Passmore GM, Leith JL, Fisher AS, Berliocchi L, et al. (2008) 

Local translation in primary afferent fibers regulates nociception. PLoS One 3:e1961. 

Kang H, Schuman EM (1996) A requirement for local protein synthesis in neurotrophin-induced 

hippocampal synaptic plasticity. Science 273:1402-1406. 

Kelleher RJ 3rd, Govindarajan A, Tonegawa S (2004) Translational regulatory mechanisms in 

persistent forms of synaptic plasticity. Neuron 44:59-73. 

Kersten W, Kersten H, Rauen HM (1960) Action of nucleic acids on the inhibition of growth by 

actinomycin of Neurospora crassa. Nature 187:60-61. 



  

31 
 

Khodorova A, Nicol GD, Strichartz G (2013) The p75NTR signaling cascade mediates mechanical 

hyperalgesia induced by nerve growth factor injected into the rat hind paw. Neuroscience 

254:312-323. 

Khodorova A, Nicol GD, Strichartz G (2017) The Trk-A Receptor mediates experimental thermal 

hyperalgesia produced by nerve growth factor: modulation by the p75 neurotrophin receptor. 

Neuroscience 340:384-397. 

Laferrière A, Pitcher MH, Haldane A, Huang Y, Cornea V, Kumar N, Sacktor TC, Cervero F, 

Coderre TJ (2011) PKMζ is essential for spinal plasticity underlying the maintenance of 

persistent pain. Mol Pain 7:99.  

Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini, R (1994) Mast 

cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci U.S.A. 91:3739-

3743.  

Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon, A (1996) Nerve growth factor: from 

neurotrophin to neurokine. Trends Neurosci 19:514-520. 

Lewin GR, Ritter AM, Mendell LM (1993) Nerve growth factor-induced hyperalgesia in the 

neonatal and adult rat. J Neurosci 13:2136-2148. 

Lewin GR, Rueff A, Mendell LM (1994) Peripheral and central mechanisms of NGF-induced 

hyperalgesia. Eur J Neurosci 6:1903-1912. 

Ling DS, Benardo LS, Serrano PA, Blace N, Kelly MT, Crary JF, Sacktor TC (2002) Protein 

kinase Mzeta is necessary and sufficient for LTP maintenance. Nat Neurosci 5:295-296. 

Linker R, Gold R, Luhder F (2009) Function of neurotrophic factors beyond the nervous system: 

inflammation and autoimmune demyelination. Crit Rev Immunol 29:43-68. 



  

32 
 

Marchand F, D'Mello R, Yip PK, Calvo M, Muller E, Pezet S, Dickenson AH, McMahon SB 

(2011) Specific involvement of atypical PKCζ/PKMζ in spinal persistent nociceptive processing 

following peripheral inflammation in rat. Mol Pain 7:86. 

Mazurek N, Weskamp G, Erne P, Otten U (1986) Nerve growth factor induces mast cell 

degranulation without changing intracellular calcium levels. FEBS Lett 198:315-320.  

McMahon SB (1996) NGF as a mediator of inflammatory pain. Philos Trans R Soc Lond B Biol 

Sci 351:431-440. 

Melemedjian OK, Asiedu MN, Tillu DV, Peebles KA, Yan J, Ertz N, et al. (2010) IL-6- and NGF-

induced rapid control of protein synthesis and nociceptive plasticity via convergent signaling to 

the eIF4F complex. J Neurosci 30:15113-15123. 

Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A, Gross JD, Degterev A, Yuan J, 

Chorev M, Halperin JA, Wagner G (2007) Small-molecule inhibition of the interaction between 

the translation initiation factors eIF4E and eIF4G. Cell 128:257-267. 

Muslimov IA, Nimmrich V, Hernandez AI, Tcherepanov A, Sacktor TC, Tiedge H (2004) 

Dendritic transport and localization of protein kinase Mzeta mRNA: implications for molecular 

memory consolidation. J Biol Chem 279:52613-52622. 

Muslimov IA, Patel MV, Rose A, Tiedge H (2011) Spatial code recognition in neuronal RNA 

targeting: role of RNA-hnRNP A2 interactions. J Cell Biol 194:441-457. 

Nicol GD, Vasko MR (2007) Unraveling the story of NGF-mediated sensitization of nociceptive 

sensory neurons: ON or OFF the Trks? Mol Interv 7:26-41. 

Nockher WA, Renz H (2006) Neurotrophins in allergic diseases: from neuronal growth factors to 

intercellular signaling molecules. J Allergy Clin Immunol 117:583-589. 



  

33 
 

Otten U, Ehrhard P, Peck R (1989) Nerve growth factor induces growth and differentiation of 

human B lymphocytes. Proc Natl Acad Sci U.S.A. 86:10059-10063.  

Petruska JC, Napaporn J, Johnson RD, Gu JG, Cooper BY (2000) Subclassified acutely 

dissociated cells of rat DRG: histochemistry and patterns of capsaicin-, proton-, and ATP-

activated currents. J Neurophysiol.; 84: 2365-2379. 

Price TJ, Rashid MH, Millecamps M, Sanoja R, Entrena JM, Cervero F (2007) Decreased 

nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of 

mGluR1/5 and mTOR. J Neurosci 27:13958-13967. 

Puig S, Sorkin LS (1996) Formalin-evoked activity in identified primary afferent fibers: systemic 

lidocaine suppresses phase-2 activity. Pain 64:345-355. 

Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT (1995) 

Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 

270:815-822. 

Sacktor TC (2011) How does PKMζ maintain long-term memory? Nat Rev Neurosci 12:9-15.  

Sacktor TC, Osten P, Valsamis H, Jiang X, Naik MU, Sublette E (1993) Persistent activation of 

the zeta isoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl 

Acad Sci U.S.A 90:8342-8346. 

Santambrogio L, Benedetti M, Chao MV, Muzaffar R, Kulig K, Gabellini N, Hochwald, G (1994) 

Nerve growth factor production by lymphocytes. J Immunol 153:4488-4495.  

Seidel MF, Herguijuela M, Forkert R, Otten U (2010) Nerve growth factor in rheumatic diseases. 

Semin Arthritis Rheum 40:109-126. 



  

34 
 

Selbie LA, Schmitz-Peiffer C, Sheng Y, Biden TJ (1993) Molecular cloning and characterization 

of PKC iota, an atypical isoform of protein kinase C derived from insulin-secreting cells. J Biol 

Chem 268:24296-24302. 

Shema R, Haramati S, Ron S, Hazvi S, Chen A, Sacktor TC, Dudai, Y  (2011) Enhancement of 

consolidated long-term memory by overexpression of protein kinase Mzeta in the neocortex. 

Science 331:1207-1210. 

Shema R, Sacktor TC, Dudai Y (2007) Rapid erasure of long-term memory associations in the 

cortex by an inhibitor of PKM zeta. Science 317:951-953. 

Shu X, Mendell LM (1999) Nerve growth factor acutely sensitizes the response of adult rat 

sensory neurons to capsaicin. Neurosci Lett 274:159-162. 

Skaper SD (2001) Nerve growth factor: a neurokine orchestrating neuroimmune-endocrine 

functions. Mol Neurobiol 24:183-199. 

Stanton PK, Sarvey JM (1984) Blockade of long-term potentiation in rat hippocampal CA1 

region by inhibitors of protein synthesis. J Neurosci 4:3080-3088. 

Stoeckel K, Schwab M, Thoenen H (1975) Specificity of retrograde transport of nerve growth 

factor (NGF) in sensory neurons: a biochemical and morphological study. Brain Res 89:1-14.  

Takei N, Kawamura M, Hara K, Yonezawa K, Nawa H (2001) Brain-derived neurotrophic factor 

enhances neuronal translation by activating multiple initiation processes: comparison with the 

effects of insulin. J Biol Chem 276:42818-42825. 

Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM (2002) A rapamycin-

sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc 

Natl Acad Sci U.S.A. 99:467-472.  



  

35 
 

Terada N, Patel HR, Takase K, Kohno K, Nairn AC, Gelfand EW (1994) Rapamycin selectively 

inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl 

Acad Sci U.S.A. 91:11477-11481. 

Teske BF, Baird TD, Wek RC. Methods for analyzing eIF2 kinases and translational control in 

the unfolded protein response. Methods Enzymol. 2011; 490: 333-356. 

Thorpe LW, Perez-Polo JR (1987) The influence of nerve growth factor on the in vitro 

proliferative response of rat spleen lymphocytes. J Neurosci Res 18:134-139.  

Villoslada P, Genain CP (2004) Role of nerve growth factor and other trophic factors in brain 

inflammation. Prog Brain Res 146:403-414. 

Weskamp G, Otten U (1987) An enzyme-linked immunoassay for nerve growth factor (NGF): a 

tool for studying regulatory mechanisms involved in NGF production in brain and in peripheral 

tissues. J Neurochem 48:1779-1786.  

Woolf CJ (1996) Phenotypic modification of primary sensory neurons: the role of nerve growth 

factor in the production of persistent pain. Philos Trans R Soc Lond B Biol Sci 351:441-448. 

Woolf CJ, Safieh-Garabedian B, Ma QP, Crilly P, Winter J (1994) Nerve growth factor 

contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 62:327-

331. 

Zhang YH, Kays J, Hodgdon KE, Sacktor TC, Nicol GD (2012) Nerve growth factor enhances 

the excitability of rat sensory neurons through activation of the atypical protein kinase C isoform, 

PKMζ. J Neurophysiol 107:315-335. 



  

36 
 

Zhang YH, Nicol GD (2004) NGF-mediated sensitization of the excitability of rat sensory 

neurons is prevented by a blocking antibody to the p75 neurotrophin receptor. Neurosci Lett 

366:187-192. 

Zhang YH, Vasko MR, Nicol GD (2002) Ceramide, a putative second messenger for nerve 

growth factor, modulates the TTX-resistant Na+ current and delayed rectifier K+ current in rat 

sensory neurons. J Physiol 544:385-402. 

 

  



  

37 
 

Figure Legends 

Figure 1.  NGF produces sensitization of isolated sensory neurons that is blocked by inhibitors 

of translation, but not transcription.  Panel A. Treatment with 100 ng/ml NGF significantly 

increases the number of evoked APs in either untreated sensory neurons or in neurons exposed 

to the vehicle DMSO alone.  Asterisks represent a significant difference between the control and 

those treated with NGF.  The ordinate and axis labels in A apply to panels B, C, D, and E.  

Panel B.  A 30 min pretreatment with 10 μM actinomycin D (a transcription inhibitor) does not 

affect the sensitization produced by NGF.  Asterisks represent a significant difference between 

the control and those treated with NGF.  Panel C. A 30 min pretreatment with 60 μM 

cycloheximide (a translation inhibitor) blocks the sensitization produced by NGF.  Panel D.  A 60 

min pretreatment with 500 nM rapamycin (a translation inhibitor) blocks the sensitization 

produced by NGF.  Panel E.  A 30 min pretreatment with 30 μM 4EGI-1 (a translation inhibitor) 

blocks the sensitization produced by NGF.  Panel F.  A 30 min pretreatment with 1 μM okadaic 

acid (an inhibitor of protein phosphatase 1/2A) blocked the sensitization produced by NGF.   

 

Figure 2.  NGF significantly increases the amount of PKMζ, protein, which is blocked by 

cycloheximide.  Panel A illustrates a representative Western blot wherein exposure to 100 ng/ml 

NGF for 30 min increases the level of PKMζ protein (the 49 kDa band).  In contrast, no NGF–

induced increase in PKMζ occurs after pretreatment with 50 μg/ml cycloheximide for 1 h.  The 

bottom panel indicates the amounts of HPRT protein as a loading control.  Panel B summarizes 

the results obtained from three different Western blots obtained from three different tissue 

harvests.  Exposure to 100 ng/ml NGF for 30 min significantly increased the amount of PKMζ 

protein normalized to their respective HPRT levels.  The amounts of PKMζ after these different 

treatments were then normalized to their corresponding levels of PKMζ protein obtained for the 
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untreated condition (-NGF, -CHX) (data not shown).  The asterisk represents a significant 

difference between the NGF+ CHX− and all other samples. 

 

Figure 3.  NGF produces mechanical hyperalgesia that is suppressed by either cycloheximide or 

rapamycin.  Response Efficiency after NGF when paw is pre-treated by Vehicle (Veh), 

Cycloheximide (CHX) or Rapamycin (Rapa).  When compared to the (merged) baseline value, 

responses to NGF (all for 15g VFH)  after Vehicle injections (n= 6) are significantly different at 

0.5, 1, 3.5 and 22 h, whereas those after CHX (n=11) or Rapa (n=12) only reach significance at 

22 h (*** P≤0.005, ** P≤0.01, Kruskal-Wallis, Wilcoxon Rank sum tests).  In comparison to the 

Responses after Vehicle, those after CHX or Rapa are significantly different at 0.5, 1 and 3.5 h 

(### P≤0.005, ## P≤0.01, # P≤0.05, Kruskal-Wallis/Wilcoxon Rank Sum tests).   

 

Figure 4.  Established NGF-induced mechanical hyperalgesia is transiently reversed by local 

injection of rapamycin.  Panel A: local injection of the vehicle, DMSO, did not affect the pre-

existing NGF-induced hypersensitivity, measured acutely or 24 h and 48 h after DMSO injection 

(n=8).  Friedman’s test for 6 groups comparing the baseline values with the responses at other 

time points: P=0.0004, *P≤0.05, **P≤0.01 vs. baseline with Dunn’s post hoc pair-wise test.  

Panel B: the NGF-induced hypersensitivity was significantly reduced 24 h after the injection of 

rapamycin (10 mM; 10 μl) on D3 (n=9).  Established hypersensitivity shown by Friedman’s test 

for 6 groups comparing baseline value with the responses at other time points: P≤0.0001, then  

*P≤0.05, **P≤0.01, ***P≤0.001 vs. baseline (Dunn’s post hoc pair-wise test). Effect of rapamycin 

shown by comparing the D4 (24 h of rapamycin) value vs. the 4 h D3 value or the D3 value 

before rapamycin, ##P≤0.005, two-tailed Wilcoxon test  Panel C: Injection of rapamycin 

produces a significant decrease (at D4), 24 h after rapamycin injection, in the maximal possible 
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hypersensitivity produced by NGF, as measured at D3 (% MPE) (P=0.002, Kruskal-Wallis test, 

**P≤0.01 vs. the 4 h D3 value and *P≤0.05 vs.48 h D5 value, Dunn’s post hoc pair-wise test). 

 

Figure 5.  Established NGF-induced mechanical hyperalgesia is transiently reversed by local 

injection of mPSI.  Panel A: Hindpaw injection of NGF (1 μg/10 μl) produced a significant 

increase in mechanical sensitivity on D3 (n=3), at which time mPSI (40 μg/20 μl) was injected 

into the same hindpaw.  Measurements on D4 showed a reversal of the mechanical 

hypersensitivity back towards the baseline response value.  These three data sets for each rat 

(n=3 rats), were taken at 24, 48 and 72 h after mPSI, respectively, and were then compared by 

Friedman’s test, which showed a significant difference among all three with P=0.0015.  

Application of Dunn’s test post-hoc for pair-wise comparison showed that D4 (24 h) and D5 (48 

h) values differed significantly, **P≤0.01, but none of the other pairs were different.  Panel B: 

Injection of mPSI produces a significant decrease in the percentage of the maximal possible 

hypersensitivity produced by NGF relative to that measured at D3 (%MPE).  Rats receiving a 

local injection of scrambled mPSI (40 μg/20 μl, n=3) exhibited no significant change in 

mechanical sensitivity on D4 and D5.  Friedman’s test for 3 groups comparing value at 24 h with 

the responses at other time points: P=0.0015, **P≤0.01 vs. 48 h after mPSI (Dunn’s post hoc 

test).   
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