29 research outputs found

    Primary peritoneal and ovarian cancers: an epidemiological comparative analysis

    Get PDF
    We performed case–control analyses using data from the North Carolina Ovarian Cancer Study to determine risk factors that distinguish primary peritoneal cancer (PPC) from epithelial ovarian cancer (EOC). Our risk factor analyses were restricted to invasive serous cancers including 495 EOC cases, 62 PPC cases and 1,086 control women. Logistic regression analyses were used to calculate adjusted odds ratios and 95% confidence intervals for risk factor associations. Although many case–control associations for the invasive serous PPC cases were similar to those of the invasive serous EOC cases, some differences were observed including a twofold increase in risk of invasive serous PPC in women who were ≥35 years at last pregnancy, whereas a decreased risk was observed for invasive serous EOC risk. We could not confirm a previous report of an association between tubal ligation and PPC, a factor consistently associated with a decreased risk of EOC. The difference in the risk factor associations between invasive serous PPC and EOC cancers suggests divergent molecular development of peritoneal and ovarian cancers. A larger study to determine risk factors for invasive serous PPC is warranted

    Evaluation of vitamin D biosynthesis and pathway target genes reveals UGT2A1/2 and EGFR polymorphisms associated with epithelial ovarian cancer in African American Women.

    Get PDF
    An association between genetic variants in the vitamin D receptor (VDR) gene and epithelial ovarian cancer (EOC) was previously reported in women of African ancestry (AA). We sought to examine associations between genetic variants in VDR and additional genes from vitamin D biosynthesis and pathway targets (EGFR, UGT1A, UGT2A1/2, UGT2B, CYP3A4/5, CYP2R1, CYP27B1, CYP24A1, CYP11A1, and GC). Genotyping was performed using the custom-designed 533,631 SNP Illumina OncoArray with imputation to the 1,000 Genomes Phase 3 v5 reference set in 755 EOC cases, including 537 high-grade serous (HGSOC), and 1,235 controls. All subjects are of African ancestry (AA). Logistic regression was performed to estimate odds ratios (OR) and 95% confidence intervals (CI). We further evaluated statistical significance of selected SNPs using the Bayesian False Discovery Probability (BFDP). A significant association with EOC was identified in the UGT2A1/2 region for the SNP rs10017134 (per allele OR = 1.4, 95% CI = 1.2-1.7, P = 1.2 × 10-6 , BFDP = 0.02); and an association with HGSOC was identified in the EGFR region for the SNP rs114972508 (per allele OR = 2.3, 95% CI = 1.6-3.4, P = 1.6 × 10-5 , BFDP = 0.29) and in the UGT2A1/2 region again for rs1017134 (per allele OR = 1.4, 95% CI = 1.2-1.7, P = 2.3 × 10-5 , BFDP = 0.23). Genetic variants in the EGFR and UGT2A1/2 may increase susceptibility of EOC in AA women. Future studies to validate these findings are warranted. Alterations in EGFR and UGT2A1/2 could perturb enzyme efficacy, proliferation in ovaries, impact and mark susceptibility to EOC.Includes NIHR and CRUK

    Exploring function of conserved non-coding DNA in its chromosomal context

    No full text
    There is renewed interest in understanding expression of vertebrate genes in their chromosomal context because regulatory sequences that confer tissue-specific expression are often distributed over large distances along the DNA from the gene. One approach inserts a universal sensor/reporter-gene into the mouse or zebrafish genome to identify regulatory sequences in highly conserved non-coding DNA in the vicinity of the integrated reporter-gene. However detailed mechanisms of interaction of these regulatory elements among themselves and/or with the genes they influence remain elusive with the strategy. The inability to associate distant regulatory elements with the genes they regulate makes it difficult to examine the contribution of sequence changes in regulatory DNA to human disease. Such associations have been obtained in favorable circumstances by testing the regulatory potential of highly conserved non-coding DNA individually in small reporter-gene-containing plasmids. Alternative approaches use tiny fragments of chromosomes in Bacterial Artificial Chromosomes, BACs, where the gene of interest is tagged in vitro with a reporter/sensor gene and integrated into the germ-line of animals for expression. Mutational analysis of the BAC DNA identifies regulatory sequences. A recent approach inserts a sensor/reporter-gene into a BAC that is also truncated progressively from an end of genomic insert, and the end-deleted BAC carrying the sensor is then integrated into the genome of a developing animal for expression. The approach allows mechanisms of tissue-specific gene expression to be explored in much greater detail, although the chromosomal context of such mechanisms is limited to the length of the BAC. Here we discuss the relative strengths of the various approaches and explore how the integrated-sensor in the BACs method applied to a contig of BACs spanning a chromosomal region is likely to address mechanistic questions on interactions between gene and regulatory DNA in greater molecular detail

    The association between sexual function and prostate cancer risk in US veterans

    No full text
    Sexual dysfunction and prostate cancer are common among older men. Few studies explored the association between these two illnesses. We examined whether sexual function is associated with prostate cancer risk among older men. Among 448 men undergoing prostate biopsy at the Durham Veterans Affairs Hospital, sexual function was ascertained from the Expanded Prostate Cancer Index Composite sexual assessment. We tested the link between sexual function and prostate cancer risk adjusting for multiple demographic and clinical characteristics using logistic regression. Multinomial logistic regression was used to test the associations with risk of low-grade (Gleason ≤6) and high-grade (Gleason ≥7 or ≥4 + 3) disease versus no cancer. Of 448 men, 209 (47%) had a positive biopsy; these men were less likely to be white (43% vs 55%, P = 0.013), had higher prostate-specific antigen (PSA) (6.0 vs 5.4 ng ml−1 , P < 0.001), but with lower mean sexual function score (47 vs 54, P = 0.007). There was no difference in age, BMI, pack years smoked, history of heart disease and/or diabetes. After adjusting for baseline differences, sexual function was linked with a decreased risk of overall prostate cancer risk (OR: 0.91 per 10-point change in sexual function, P = 0.004) and high-grade disease whether defined as Gleason ≥7 (OR: 0.86, P = 0.001) or ≥4 + 3 (OR: 0.85, P = 0.009). Sexual function was unrelated to low-grade prostate cancer (OR: 0.94, P = 0.13). Thus, among men undergoing prostate biopsy, higher sexual function was associated with a decreased risk of overall and high-grade prostate cancer. Confirmatory studies are needed

    Xenobiotic Metabolism in Mice Lacking the UDP-Glucuronosyltransferase 2 Family

    No full text
    UDP-Glucuronosyltransferases (UGTs) conjugate a glucuronyl group from glucuronic acid to a wide range of lipophilic substrates to form a hydrophilic glucuronide conjugate. The glucuronide generally has decreased bioactivity and increased water solubility to facilitate excretion. Glucuronidation represents an important detoxification pathway for both endogenous waste products and xenobiotics, including drugs and harmful industrial chemicals. Two clinically significant families of UGT enzymes are present in mammals: UGT1s and UGT2s. Although the two families are distinct in gene structure, studies using recombinant enzymes have shown considerable overlap in their ability to glucuronidate many substrates, often obscuring the relative importance of the two families in the clearance of particular substrates in vivo. To address this limitation, we have generated a mouse line, termed ΔUgt2, in which the entire Ugt2 gene family, extending over 609 kilobase pairs, is excised. This mouse line provides a means to determine the contributions of the two UGT families in vivo. We demonstrate the utility of these animals by defining for the first time the in vivo contributions of the UGT1 and UGT2 families to glucuronidation of the environmental estrogenic agent bisphenol A (BPA). The highest activity toward this chemical is reported for human and rodent UGT2 enzymes. Surprisingly, our studies using the ΔUgt2 mice demonstrate that, while both UGT1 and UGT2 isoforms can conjugate BPA, clearance is largely dependent on UGT1s
    corecore