31 research outputs found

    Mechanisms of attenuation of pulmonary V'O_{2} slow component in humans after prolonged endurance training

    Get PDF
    In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V'O2 ) kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean\ub1SD: age 22.33\ub11.44 years, V'O2peak 3198\ub1458 mL \ub7 min-1 ) performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by 3c5%, P = 0.027) in V'O2 during prior low-intensity exercise (20 W) and in shortening of \u3c4 p of the V'O2 on-kinetics (30.1\ub15.9 s vs. 25.4\ub11.5 s, P = 0.007) during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V'O2 on-kinetics by 49% (P = 0.001) and a decrease in the end-exercise V'O2 by 3c5% (P = 0.005). An increase (P = 0.02) in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06) to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11). No significant effect of training on the V'O2peak was found (P = 0.12). However, the power output reached at the lactate threshold increased by 19% (P = 0.01). The power output obtained at the V'O2peak increased by 14% (P = 0.003) and the time of 1,500-m performance decreased by 5% (P = 0.001). Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V'O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA) of oxidative phosphorylation (OXPHOS) complexes after training and decrease in the "additional" ATP usage rising gradually during heavy-intensity exercise

    Lowered serum testosterone concentration is associated with enhanced inflammation and worsened lipid profile in men

    No full text
    The negative relationship between testosterone and inflammatory cytokines has been reported for decades, although the exact mechanisms of their interactions are still not clear. At the same time, little is known about the relation between androgens and acute phase proteins. Therefore, in this investigation, we aimed to study the relationship between androgen status and inflammatory acute phase reactants in a group of men using multi-linear regression analysis. Venous blood samples were taken from 149 men ranging in age from 18 to 77 years. Gonadal androgens [testosterone (T) and free testosterone (fT)], acute phase reactants [C-reactive protein (CRP), ferritin (FER), alpha-1-acid glycoprotein (AAG), and interleukin-6 (IL-6)], cortisol (C), and lipid profile concentrations were determined. It was demonstrated that the markers of T and fT were negatively correlated with all acute phase proteins (CRP, FER, and AAG; p < 0.02) and the blood lipid profile [total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TG); p < 0.03]. Multivariate analysis showed that T, fT, and the fT/C ratio were inversely correlated with the CRP, AAG, and FER concentrations independently of age and blood lipids. When adjustment for BMI was made, T, fT, and the fT/C ratio were negatively correlated with the AAG concentrations only. In addition, it was demonstrated that gonadal androgens were positively correlated with physical activity level (p < 0.01). We have concluded that a lowered serum T concentration may promote inflammatory processes independently of adipose tissue and age through a reduced inhibition of inflammatory cytokine synthesis, which leads to enhanced acute phase protein production. Therefore, a low serum T concentration appears to be an independent risk factor in the development of atherosclerosis and cardiovascular diseases. Moreover, the positive correlation between testosterone and physical activity level suggests that exercise training attenuates the age-related decrease in gonadal androgens and, in this way, may reduce the enhancement of systemic low-grade inflammation in aging men
    corecore