237 research outputs found

    Strain controlled oxygen vacancy formation and ordering in CaMnO3_3

    Full text link
    We use first-principles calculations to investigate the stability of bi-axially strained \textit{Pnma} perovskite CaMnO3_3 towards the formation of oxygen vacancies. Our motivation is provided by promising indications that novel material properties can be engineered by application of strain through coherent heteroepitaxy in thin films. While it is usually assumed that such epitaxial strain is accommodated primarily by changes in intrinsic lattice constants, point defect formation is also a likely strain relaxation mechanism. This is particularly true at the large strain magnitudes (>>4%) which first-principles calculations often suggest are required to induce new functionalities. We find a strong dependence of oxygen vacancy defect formation energy on strain, with tensile strain lowering the formation energy consistent with the increasing molar volume with increasing oxygen deficiency. In addition, we find that strain differentiates the formation energy for different lattice sites, suggesting its use as a route to engineering vacancy ordering in epitaxial thin films.Comment: 7 pages, 7 figure

    Electrical conductivity and thermopower of (1-x) BiFeO3 - xBi(0.5)K(0.5)TiO(3) (x=0.1, 0.2) ceramics near the ferroelectric to paraelectric phase transition

    Get PDF
    Ferroelectric BiFeO3 has attractive properties such as high strain and polarization, but a wide range of applications of bulk BiFeO3 are hindered due to high leakage currents and a high coercive electric field. Here, we report on the thermal behaviour of the electrical conductivity and thermopower of BiFeO3 substituted with 10 and 20 mol% Bi0.5K0.5TiO3. A change from p-type to n-type conductivity in these semi-conducting materials was demonstrated by the change in the sign of the Seebeck coefficient and the change in the slope of the isothermal conductivity versus partial pressure of O. A minimum in the isothermal conductivity was observed at ~10−2 bar O2 partial pressure for both solid solutions. The strong dependence of the conductivity on the partial pressure of O2 was rationalized by a point defect model describing qualitatively the conductivity involving oxidation/reduction of Fe3+, the dominating oxidation state of Fe in stoichiometric BiFeO3. The ferroelectric to paraelectric phase transition of 80 and 90 mol% BiFeO3 was observed at 648 ± 15 and 723 ± 15 °C respectively by differential thermal analysis and confirmed by dielectric spectroscopy and high temperature powder X-ray diffraction.Author preprin

    Phase diagram of silica from computer simulation

    Full text link
    We evaluate the phase diagram of the ``BKS'' potential [Van Beest, Kramer and van Santen, Phys. Rev. Lett. 64, 1955 (1990)], a model of silica widely used in molecular dynamics (MD) simulations. We conduct MD simulations of the liquid, and three crystals (beta-quartz, coesite and stishovite) over wide ranges of temperature and density, and evaluate the total Gibbs free energy of each phase. The phase boundaries are determined by the intersection of these free energy surfaces. Not unexpectedly for a classical pair potential, our results reveal quantitative discrepancies between the locations of the BKS and real silica phase boundaries. At the same time, we find that the topology of the real phase diagram is reproduced, confirming that the BKS model provides a satisfactory qualitative description of a silica-like material. We also compare the phase boundaries with the locations of liquid-state thermodynamic anomalies identified in previous studies of the BKS model.Comment: 7 pages, 7 figure

    Wetting of Carbon Cathodes by Molten Electrolyte and Aluminium

    Get PDF
    The extent to which the carbon cathode is wetted by molten electrolyte or molten aluminium metal is important for understanding the cathode wear during aluminium electrolysis. The present paper reports on a laboratory study of the wettability of four different carbon materials using the immersion–emersion technique. The effect of polarization of the carbon cathode on the wettability was also included in the study. The measurements demonstrated that the carbon material is poorly wetted by the molten electrolyte or the metal. After polarization of the carbon in the cathodic direction, the cathode became quickly wetted by the molten electrolyte. The presence of aluminium during the experiments resulted in enhanced wettability by the molten electrolyte. The carbon materials were analyzed by microscopy after the experiments and formation of Al4C3 was observed on the surfaces of the materials. The role of sodium in relation to enhanced wettability by molten electrolyte is discussed.acceptedVersio

    High temperature X-ray diffraction and thermo-gravimetrical analysis of the cubic perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ under different atmospheres

    Get PDF
    Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) with the cubic perovskite structure is known to be metastable at low temperature under an oxidizing atmosphere. Here, the thermal and chemical expansion of BSCF were studied by in situ high temperature powder X-ray diffraction and thermo-gravimetrical analysis (TGA) in partial pressure of oxygen ranging from an inert atmosphere (∼10−4 bar) to 10 bar O2. The BSCF powder, heat treated at 1000 °C and quenched to ambient temperature prior to the analysis, was shown to oxidize under an oxidizing atmosphere before thermal reduction took place. With decreasing partial pressure of oxygen the initial oxidation was suppressed and only reduction of Co/Fe and loss of oxygen were observed under an inert atmosphere. The thermal expansion of BSCF under different atmospheres was determined from the thermal evolution of the cubic unit cell parameter, demonstrating that the thermal expansion of BSCF depends on the atmosphere. Chemical expansion of BSCF was also estimated based on the diffraction data and thermo-gravimetrical analysis. A hexagonal perovskite phase, coexisting with the cubic BSCF polymorph, was observed to be formed above 600 °C during heating. The phase separation leading to the formation of the hexagonal polymorph was driven by oxidation, and the unit cell of the cubic BSCF was shown to decrease with increasing amounts of the hexagonal phase. The hexagonal phase disappeared upon further heating, accompanied with an expansion of the unit cell of the cubic BSCFAuthor preprin

    Removing fluoride-terminations from multilayered V2CTx MXene by gas hydrolyzation

    Get PDF
    Two-dimensional MXenes have shown great promise for many different applications, but in order to fully utilize their potential, control of their termination groups is essential. Here we demonstrate hydrolyzation with a continuous gas flow as a method to remove F-terminations from multilayered V2CTx particles, in order to prepare nearly F-free and partly bare vanadium carbide MXene. Density functional theory calculations demonstrate that the substitution of F-terminations is thermodynamically feasible and presents partly nonterminated V2CO as the dominating hydrolyzation product. Hydrolyzation at elevated temperatures reduced the F content but only subtly changed the O content, as inferred from spectroscopic data. The ideal hydrolyzation temperature was found to be 300 °C, as a degradation of the V2CTx phase and a transition to vanadium oxycarbides and V2O3 were observed at higher temperature. When tested as electrodes in Li-ion batteries, the hydrolyzed MXene demonstrated a reduced polarization compared with the pristine MXene, but no change in intercalation voltage was observed. Annealing in dry Ar did not result in the same F reduction, and the importance of water vapor was concluded, demonstrating hydrolyzation as a new and efficient method to control the surface terminations of multilayered V2CTx post etching. These results also provide new insights on the thermal stability of V2CTx MXene in hydrated atmospheres.publishedVersio

    Impurity diffusion of 141 Pr in LaMnO 3 , LaCoO 3 and LaFeO 3 materials

    Get PDF
    The impurity diffusion of Pr 3+ in dense polycrystalline LaMnO 3 , LaCoO 3 and LaFeO 3 was studied at 1373-1673 K in air in order to investigate cation diffusion in these materials. Cation distribution profiles were measured by secondary-ion mass spectrometry and it was found that penetration profiles of Pr 3+ had two distinct regions with different slopes. The first, shallow region was used to evaluate the bulk diffusion coefficients

    Origin of ferroelectric polarization in tetragonal tungsten-bronze-type oxides

    Get PDF
    The origin of ferroelectric polarization in tetragonal tungsten-bronze- (TTB-) type oxide strontium barium niobate (SBN) is investigated using first-principles density functional calculations. We study in particular the relationship between the polarization and the cation and vacancy ordering on alkali-earth metal lattice sites. Lattice dynamical calculations for paraelectric structures demonstrate that all cation configurations that can be accommodated in a 1×1×2 supercell result in a single unstable polar phonon, composed primarily of relative Nb-O displacements along the polar axis, as their dominant instability. The majority of the configurations also have a second octahedral tilt-mode instability which couples weakly to the polar mode. The existence of the tilt mode is strongly dependent on the local cation ordering, consistent with the fact that it is not found experimentally. Our results suggest that ferroelectricity in the SBN system is driven by a conventional second-order Jahn-Teller mechanism caused by the d 0 Nb 5 + cations, and demonstrate the strong influence of the size of Sr and Ba on the lattice distortions associated with polarization and octahedral tilting. Finally, we suggest a mechanism for the relaxor behavior in Sr-rich SBN based on Sr displacement inside pentagonal channels in the TTB structure

    Spark Plasma Sintering and Hot Pressing of Hetero-Doped LaNbO4.

    Get PDF
    LaNbO4/La3NbO7 and LaNbO4/LaNb3O9 cer-cer composites were prepared by impregnating Ca-doped LaNbO4 powder, synthesized by spray pyrolysis, with La- or Nb-precursor solutions. The sintering of the calcined powders was investigated by dilatometry, and dense composites were prepared by conventional sintering, hot pressing, and spark plasma sintering. The particle size of the starting powders was about 50 nm, and the average grain size of the dense materials ranged from 100 nm and upwards, depending on the sintering temperature, sintering procedure, and the phase composition. The unit cell parameters of LaNbO4 showed a finite size effect and approached the cell parameters of tetragonal LaNbO4 with decreasing crystallite size, both for the single-phase material and the composites. The minority phase (La3NbO7 or LaNb3O9) were observed as isolated grains and accumulated at triple points and not along the grain boundaries, pointing to a large dihedral angle between the phases. The calcium-solubility in the minority phases was larger than in LaNbO4, which corresponds well with previous reports. The electrical conductivity of the heterodoped materials was similar to, or lower than, that for Ca-doped LaNbO4
    • …
    corecore