378 research outputs found

    Stellar dynamics around transient co-rotating spiral arms

    Full text link
    Spiral density wave theory attempts to describe the spiral pattern in spiral galaxies in terms of a long-lived wave structure with a constant pattern speed in order to avoid the winding dilemma. The pattern is consequently a rigidly rotating, long-lived feature. We run an N-body/SPH simulation of a Milky Way-sized barred disk, and find that the spiral arms are transient features whose pattern speeds decrease with radius, in such a way that the pattern speed is almost equal to the rotation curve of the galaxy. We trace particle motion around the spiral arms. We show that particles from behind and in front of the spiral arm are drawn towards and join the arm. Particles move along the arm in the radial direction and we find a clear trend that they migrate toward the outer (inner) radii on the trailing (leading) side of the arm. Our simulations demonstrate that at all radii where there is a co-rotating spiral arm the particles continue to be accelerated (decelerated) by the spiral arm for long periods, which leads to strong migration.Comment: 2 pages, 2 figures, to appear in the proceedings of "Assembling the puzzle of the Milky Way", Le Grand-Bornand, 17-22 April, 2011, eds. C. Reyle, A. Robin, M. Schulthei

    Merger-Induced Metallicity Dilution in Cosmological Galaxy Formation Simulations

    Full text link
    Observational studies have revealed that galaxy pairs tend to have lower gas-phase metallicity than isolated galaxies. This metallicity deficiency can be caused by inflows of low-metallicity gas due to the tidal forces and gravitational torques associated with galaxy mergers, diluting the metal content of the central region. In this work we demonstrate that such metallicity dilution occurs in state-of-the-art cosmological simulations of galaxy formation. We find that the dilution is typically 0.1 dex for major mergers, and is noticeable at projected separations smaller than 4040 kpc. For minor mergers the metallicity dilution is still present, even though the amplitude is significantly smaller. Consistent with previous analysis of observed galaxies we find that mergers are outliers from the \emph{fundamental metallicity relation}, with deviations being larger than expected for a Gaussian distribution of residuals. Our large sample of mergers within full cosmological simulations also makes it possible to estimate how the star formation rate enhancement and gas consumption timescale behave as a function of the merger mass ratio. We confirm that strong starbursts are likely to occur in major mergers, but they can also arise in minor mergers if more than two galaxies are participating in the interaction, a scenario that has largely been ignored in previous work based on idealised isolated merger simulations.Comment: Submitted to MNRA

    The effects of bar-spiral coupling on stellar kinematics in the Galaxy

    Get PDF
    We investigate models of the Milky Way disc taking into account simultaneously the bar and a two-armed quasi-static spiral pattern. Away from major resonance overlaps, the mean stellar radial motions in the plane are essentially a linear superposition of the isolated effects of the bar and spirals. Thus, provided the bar is strong enough, even in the presence of spiral arms, these mean radial motions are predominantly affected by the Galactic bar for large scale velocity fluctuations. This is evident when comparing the peculiar line-of-sight velocity power spectrum of our coupled models with bar-only models. However, we show how forthcoming spectroscopic surveys could disentangle bar-only non-axisymmetric models of the Galaxy from models in which spiral arms have a significant amplitude. We also point out that overlaps of low-order resonances are sufficient to enhance stellar churning within the disc, even when the spirals amplitude is kept constant. Nevertheless, for churning to be truly non-local, stronger or (more likely) transient amplitudes would be needed: otherwise the disc is actually mostly unaffected by churning in the present models. Finally, regarding vertical breathing modes, the combined effect of the bar and spirals on vertical motions is a clear non-linear superposition of the isolated effects of both components, significantly superseding the linear superposition of modes produced by each perturber separately, thereby providing an additional effect to consider when analysing the observed breathing mode of the Galactic disc in the extended Solar neighbourhood.Comment: 13 pages, 12 figures. MNRAS. Accepted for publication. v2 is the published versio

    Gas and Stellar Motions and Observational Signatures of Co-Rotating Spiral Arms

    Get PDF
    We have observed a snapshot of our N-body/Smoothed Particle Hydrodynamics simulation of a Milky Way-sized barred spiral galaxy in a similar way to how we can observe the Milky Way. The simulated galaxy shows a co-rotating spiral arm, i.e. the spiral arm rotates with the same speed as the circular speed. We observed the rotation and radial velocities of the gas and stars as a function of the distance from our assumed location of the observer at the three lines of sight on the disc plane, (l, b) = (90, 0), (120, 0) and (150,0) deg. We find that the stars tend to rotate slower (faster) behind (at the front of) the spiral arm and move outward (inward), because of the radial migration. However, because of their epicycle motion, we see a variation of rotation and radial velocities around the spiral arm. On the other hand, the cold gas component shows a clearer trend of rotating slower (faster) and moving outward (inward) behind (at the front of) the spiral arm, because of the radial migration. We have compared the results with the velocity of the maser sources from Reid et al. (2014), and find that the observational data show a similar trend in the rotation velocity around the expected position of the spiral arm at l = 120 deg. We also compared the distribution of the radial velocity from the local standard of the rest, V_LSR, with the APOGEE data at l = 90 deg as an example.Comment: 10 pages, 7 figures, accepted for publication in MNRA

    Impact of radial migration on stellar and gas radial metallicity distribution

    Get PDF
    Radial migration is defined as the change in guiding centre radius of stars and gas caused by gains or losses of angular momentum that result from gravitational interaction with non-axisymmetric structure. This has been shown to have significant impact on the metallicity distribution in galactic discs, and therefore affects the interpretation of Galactic archeology. We use a simulation of a Milky Way-sized galaxy to examine the effect of radial migration on the star and gas radial metallicity distribution. We find that both the star and gas component show significant radial migration. The stellar radial metallicity gradient remains almost unchanged but the radial metallicity distribution of the stars is broadened to produce a greater dispersion at all radii. However, the metallicity dispersion of the gas remains narrow. We find that the main drivers of the gas metallicity distribution evolution are metal enrichment and mixing: more efficient metal enrichment in the inner region maintains a negative slope in the radial metallicity distribution, and the metal mixing ensures the tight relationship of the gas metallicity with the radius. The metallicity distribution function reproduces the trend in the age-metallicity relation found from observations for stars younger than 1.0 Gyr in the Milky Way.Comment: 11 pages, 12 figures. Matches version accepted by MNRAS. Comments welcom

    The stellar kinematics of co-rotating spiral arms in Gaia mock observations

    Get PDF
    We have observed an N-body/Smoothed Particle Hydrodynamics simulation of a Milky Way like barred spiral galaxy. We present a simple method that samples N-body model particles into mock Gaia stellar observations and takes into account stellar populations, dust extinction and Gaia's science performance estimates. We examine the kinematics around a nearby spiral arm at a similar position to the Perseus arm at three lines of sight in the disc plane; (l,b)=(90,0), (120,0) and (150,0) degrees. We find that the structure of the peculiar kinematics around the co-rotating spiral arm, which is found in Kawata et al. (2014b), is still visible in the observational data expected to be produced by Gaia despite the dust extinction and expected observational errors of Gaia. These observable kinematic signatures will enable testing whether the Perseus arm of the Milky Way is similar to the co-rotating spiral arms commonly seen in N-body simulations.Comment: 9 pages 4 Figures, submitted to MNRAS 22nd Dec 201

    Neutron star mergers and rare core-collapse supernovae as sources of r-process enrichment in simulated galaxies

    Get PDF
    We use cosmological, magnetohydrodynamical simulations of Milky Way-mass galaxies from the Auriga project to study their enrichment with rapid neutron capture (r-process) elements. We implement a variety of enrichment models from both binary neutron star mergers and rare core-collapse supernovae. We focus on the abundances of (extremely) metal-poor stars, most of which were formed during the first ~Gyr of the Universe in external galaxies and later accreted onto the main galaxy. We find that the majority of metal-poor stars are r-process enriched in all our enrichment models. Neutron star merger models result in a median r-process abundance ratio which increases with metallicity, whereas the median trend in rare core-collapse supernova models is approximately flat. The scatter in r-process abundance increases for models with longer delay times or lower rates of r-process producing events. Our results are nearly perfectly converged, in part due to the mixing of gas between mesh cells in the simulations. Additionally, different Milky Way-mass galaxies show only small variation in their respective r-process abundance ratios. Current (sparse and potentially biased) observations of metal-poor stars in the Milky Way seem to prefer rare core-collapse supernovae over neutron star mergers as the dominant source of r-process elements at low metallicity, but we discuss possible caveats to our models. Dwarf galaxies which experience a single r-process event early in their history show highly enhanced r-process abundances at low metallicity, which is seen both in observations and in our simulations. We also find that the elements produced in a single event are mixed with ~10^8 Msun of gas relatively quickly, distributing the r-process elements over a large region.Comment: Accepted for publication in MNRAS. Revised version: added Figure 13 (on mixing of iron and r-process elements) and an Appendix (on iron and magnesium abundances) and updated the r-process yields (Tables 1 and 2 and normalization of abundances
    corecore