2,227 research outputs found
Phase transitions in the one-dimensional frustrated quantum XY model and Josephson-junction ladders
A one-dimensional quantum version of the frustrated XY (planar rotor) model
is considered which can be physically realized as a ladder of
Josephson-junctions at half a flux quantum per plaquette. This system undergoes
a superconductor to insulator transition at zero temperature as a function of
charging energy. The critical behavior is studied using a Monte Carlo transfer
matrix applied to the path-integral representation of the model and a
finite-size-scaling analysis of data on small system sizes. Depending on the
ratio between the interchain and intrachain couplings the system can have
single or double transitions which is consistent with the prediction that its
critical behavior should be described by the two-dimensional classical XY-Ising
model.Comment: 13 pages, Revtex, J. Appl. Phys. (to appear), Inpe-las-00
Conformal Anomaly and Critical Exponents of the XY-Ising Model
We use extensive Monte Carlo transfer matrix calculations on infinite strips
of widths up to 30 lattice spacing and a finite-size scaling analysis to
obtain critical exponents and conformal anomaly number for the
two-dimensional -Ising model. This model is expected to describe the
critical behavior of a class of systems with simultaneous and
symmetries of which the fully frustrated model is a special case. The
effective values obtained for show a significant decrease with at
different points along the line where the transition to the ordered phase takes
place in a single transition. Extrapolations based on power-law corrections
give values consistent with although larger values can not be ruled
out. Critical exponents are obtained more accurately and are consistent with
previous Monte Carlo simulations suggesting new critical behavior and with
recent calculations for the frustrated model.Comment: 33 pages, 13 latex figures, uses RevTeX 3.
Phase transitions in a frustrated XY model with zig-zag couplings
We study a new generalized version of the square-lattice frustrated XY model
where unequal ferromagnetic and antiferromagnetic couplings are arranged in a
zig-zag pattern. The ratio between the couplings can be used to tune the
system, continuously, from the isotropic square-lattice to the
triangular-lattice frustrated XY model. The model can be physically realized as
a Josephson-junction array with two different couplings, in a magnetic field
corresponding to half-flux quanta per plaquette. Mean-field approximation,
Ginzburg-Landau expansion and finite-size scaling of Monte Carlo simulations
are used to study the phase diagram and critical behavior. Depending on the
value of , two separate transitions or a transition line in the
universality class of the XY-Ising model, with combined and U(1)
symmetries, takes place. In particular, the phase transitions of the standard
square-lattice and triangular-lattice frustrated XY models correspond to two
different cuts through the same transition line. Estimates of the chiral
() critical exponents on this transition line deviate significantly from
the pure Ising values, consistent with that along the critical line of the
XY-Ising model. This suggests that a frustrated XY model or Josephson-junction
array with a zig-zag coupling modulation can provide a physical realization of
the XY-Ising model critical line.Comment: 11 pages, 9 figures, RevTex, to appear in Phys. Rev.
Decoupling in the 1D frustrated quantum XY model and Josephson junction ladders: Ising critical behavior
A generalization of the one-dimensional frustrated quantum XY model is
considered in which the inter and intra-chain coupling constants of the two
infinite XY (planar rotor) chains have different strengths. The model can
describe the superconductor to insulator transition due to charging effects in
a ladder of Josephson junctions in a magnetic field with half a flux quantum
per plaquette. From a fluctuation-effective action, this transition is expected
to be in the universality class of the two-dimensional classical XY-Ising
model. The critical behavior is studied using a Monte Carlo transfer matrix
applied to the path-integral representation of the model and a
finite-size-scaling analysis of data on small system sizes. It is found that,
unlike the previous studied case of equal inter and intra-chain coupling
constants, the XY and Ising-like excitations of the quantum model decouple for
large interchain coupling, giving rise to pure Ising model critical behavior
for the chirality order parameter and a superconductor-insulator transition in
the universality class of the 2D classical XY model.Comment: 15 pages with figures, RevTex 3.0, INPE-93/00
The Effect of Foreign Direct Investment on International Migration: Does Education Matter?
Using migration data in 1990 and 2000, we find that inward foreign direct investment (FDI) in non-OECD countries affects the out-migration of individuals with tertiary and secondary education to OECD countries originating the investments, but has no significant effect on the out-migration of individuals with primary education. Distinguishing between linkage and home effects, our results show a dominant home effect of FDI for individuals with tertiary education, but a stronger linkage effect for those with secondary education. The existing stock of former migrants in foreign countries influences the out-migration of individuals with primary education
International Comovement of Economic Fluctuations: A Spatial Analysis
We consider the comovement of economic volatility across multiple countries. Using spatial models with data from 187 countries over the period of 1960–2007, we find a strong spatial comovement of economic volatility. More interestingly, the effect of geographical proximity on economic volatility comovement is strongest during the period of international shocks (1973–86), but almost disappears over the globalization era (1987–2007). By way of contrast, the influence of trade relations in determining the comovement of economic volatility is significant over 1987–2007
Phase-coherence threshold and vortex-glass state in diluted Josephson-junction arrays in a magnetic field
We study numerically the interplay of phase coherence and vortex-glass state
in two-dimensional Josephson-junction arrays with average rational values of
flux quantum per plaquette and random dilution of junctions. For ,
we find evidence of a phase coherence threshold value , below the
percolation concentration of diluted junctions , where the superconducting
transition vanishes. For the array behaves as a
zero-temperature vortex glass with nonzero linear resistance at finite
temperatures. The zero-temperature critical currents are insensitive to
variations in in the vortex glass region while they are strongly
dependent in the phase coherent region.Comment: 6 pages, 4 figures, to appear in Phys. Rev.
Two phase galaxy formation: The Evolutionary Properties of Galaxies
We use our model for the formation and evolution of galaxies within a
two-phase galaxy formation scenario, showing that the high-redshift domain
typically supports the growth of spheroidal systems, whereas at low redshifts
the predominant baryonic growth mechanism is quiescent and may therefore
support the growth of a disc structure. Under this framework we investigate the
evolving galaxy population by comparing key observations at both low and
high-redshifts, finding generally good agreement. By analysing the evolutionary
properties of this model, we are able to recreate several features of the
evolving galaxy population with redshift, naturally reproducing number counts
of massive star-forming galaxies at high redshifts, along with the galaxy
scaling relations, star formation rate density and evolution of the stellar
mass function. Building upon these encouraging agreements, we make model
predictions that can be tested by future observations. In particular, we
present the expected evolution to z=2 of the super-massive black hole mass
function, and we show that the gas fraction in galaxies should decrease with
increasing redshift in a mass, with more and more evolution going to higher and
higher masses. Also, the characteristic transition mass from disc to bulge
dominated system should decrease with increasing redshift.Comment: 15 pages, 11 figures. Version polished for publication in MNRA
Revisiting the location and environment of the central engine in NGC1068
We revisit in this paper the location of the various components observed in
the AGN of NGC1068. Discrepancies between previously published studies are
explained, and a new measurement for the absolute location of the K-band
emission peak is provided. It is found to be consistent with the position of
the central engine as derived by Gallimore (1997), Capetti (1997) and Kishimoto
(1999). A series of map overlays is then presented and discussed. Model
predictions of dusty tori show that the nuclear unresolved NIR-MIR emission is
compatible with a broad range of models: the nuclear SED alone does not
strongly constrain the torus geometry, while placing reasonable constraints on
its size and thickness. The extended MIR emission observed within the ionizing
cone is shown to be well explained by the presence of optically thick dust
clouds exposed to the central engine radiation and having a small covering
factor. Conversely, a distribution of diffuse dust particles within the
ionizing cone is discarded. A simple model for the H2 and CO emission observed
perpendicularly to the axis of the ionizing cone is proposed. We show that a
slight tilt between the molecular disc and the Compton thick central absorber
naturally reproduces the observed distribution of H2 of CO emission.Comment: 17 pages, 11 figures, revised version for A&
- …