1,720 research outputs found

    Supersymmetric solutions of gauged five-dimensional supergravity with general matter couplings

    Full text link
    We perform the characterization program for the supersymmetric configurations and solutions of the N=1\mathcal{N}=1, d=5d=5 Supergravity Theory coupled to an arbitrary number of vectors, tensors and hypermultiplets and with general non-Abelian gaugins. By using the conditions yielded by the characterization program, new exact supersymmetric solutions are found in the SO(4,1)/SO(4)SO(4,1)/SO(4) model for the hyperscalars and with SU(2)Ă—U(1)SU(2)\times U(1) as the gauge group. The solutions also content non-trivial vector and massive tensor fields, the latter being charged under the U(1) sector of the gauge group and with selfdual spatial components. These solutions are black holes with AdS2Ă—S3AdS_2 \times S^3 near horizon geometry in the gauged version of the theory and for the ungauged case we found naked singularities. We also analyze supersymmetric solutions with only the scalars Ď•x\phi^x of the vector/tensor multiplets and the metric as the non-trivial fields. We find that only in the null class the scalars Ď•x\phi^x can be non-constant and for the case of constant Ď•x\phi^x we refine the classification in terms of the contributions to the scalar potential.Comment: Minor changes in wording and some typos corrected. Version to appear in Class. Quantum Grav. 38 page

    All the timelike supersymmetric solutions of all ungauged d=4 supergravities

    Full text link
    We determine the form of all timelike supersymmetric solutions of all N greater or equal than 2, d=4 ungauged supergravities, for N less or equal than 4 coupled to vector supermultiplets, using the $Usp(n+1,n+1)-symmetric formulation of Andrianopoli, D'Auria and Ferrara and the spinor-bilinears method, while preserving the global symmetries of the theories all the way. As previously conjectured in the literature, the supersymmetric solutions are always associated to a truncation to an N=2 theory that may include hypermultiplets, although fields which are eliminated in the truncations can have non-trivial values, as is required by the preservation of the global symmetry of the theories. The solutions are determined by a number of independent functions, harmonic in transverse space, which is twice the number of vector fields of the theory (n+1). The transverse space is flat if an only if the would-be hyperscalars of the associated N=2 truncation are trivial.Comment: v3: Some changes in the introduction. Version to be published in JHE

    Solutions of Minimal Four Dimensional de Sitter Supergravity

    Full text link
    Pseudo-supersymmetric solutions of minimal N=2N=2, D=4D=4 de Sitter supergravity are classified using spinorial geometry techniques. We find three classes of solutions. The first class of solution consists of geometries which are fibrations over a 3-dimensional manifold equipped with a Gauduchon-Tod structure. The second class of solution is the cosmological Majumdar-Papapetrou solution of Kastor and Traschen, and the third corresponds to gravitational waves propagating in the Nariai cosmology.Comment: 17 Pages. Minor correction to section 4; equation (4.21) corrected and (old) equation (4.26) deleted; the final result is unchange

    Vanishing Preons in the Fifth Dimension

    Get PDF
    We examine supersymmetric solutions of N=2, D=5 gauged supergravity coupled to an arbitrary number of abelian vector multiplets using the spinorial geometry method. By making use of methods developed in hep-th/0606049 to analyse preons in type IIB supergravity, we show that there are no solutions preserving exactly 3/4 of the supersymmetry.Comment: 19 pages, latex. Reference added, and further modification to the introductio

    Maximally Minimal Preons in Four Dimensions

    Full text link
    Killing spinors of N=2, D=4 supergravity are examined using the spinorial geometry method, in which spinors are written as differential forms. By making use of methods developed in hep-th/0606049 to analyze preons in type IIB supergravity, we show that there are no simply connected solutions preserving exactly 3/4 of the supersymmetry.Comment: 18 pages. References added, comments added discussing the possibility of discrete quotients of AdS(4) preserving 3/4 supersymmetry

    HKT Geometry and Fake Five Dimensional Supergravity

    Full text link
    Recent results on the relation between hyper-Kahler geometry with torsion and solutions admitting Killing spinors in minimal de sitter supergravity are extended to more general supergravity models with vector multiplets.Comment: 14 pages, latex. Minor typos corrected, references adde

    All the supersymmetric solutions of N=1,d=5 ungauged supergravity

    Get PDF
    We classify the supersymmetric solutions of ungauged N=1 d=5 SUGRA coupled to vector multiplets and hypermultiplets. All the solutions can be seen as deformations of solutions with frozen hyperscalars. We show explicitly how the 5-dimensional Reissner-Nordstrom black hole is deformed when hyperscalars are living on SO(4,1)/SO(4) are turned on, reducing its supersymmetry from 1/2 to 1/8. We also describe in the timelike and null cases the solutions that have one extra isometry and can be reduced to N=2,d=4 solutions. Our formulae allows the uplifting of certain N=2,d=4 black holes to N=1,d=5 black holes on KK monopoles or to pp-waves propagating along black strings.Comment: Some typos fixed and some paragraphs improved. 44 pages, Latex 2e file, no figures. Version to be published in JHE

    On the Bogomol'nyi bound in Einstein-Maxwell-dilaton gravity

    Full text link
    It has been shown that the 4-dimensional Einstein-Maxwell-dilaton theory allows a Bogomol'nyi-type inequality for an arbitrary dilaton coupling constant α\alpha , and that the bound is saturated if and only if the (asymptotically flat) spacetime admits a nontrivial spinor satisfying the gravitino and the dilatino Killing spinor equations. The present paper revisits this issue and argues that the dilatino equation fails to ensure the dilaton field equation unless the solution is purely electric/magnetic, or the dilaton coupling constant is given by α=0,3\alpha=0, \sqrt 3, corresponding to the Brans-Dicke-Maxwell theory and the Kaluza-Klein reduction of 5-dimensional vacuum gravity, respectively. A systematic classification of the supersymmetric solutions reveals that the solution can be rotating if and only if the solution is dyonic or the coupling constant is given by α=0,3\alpha=0, \sqrt 3. This implies that the theory with α≠0,3\alpha \ne 0, \sqrt 3 cannot be embedded into supergravity except for the static truncation. Physical properties of supersymmetric solutions are explored from various points of view.Comment: v2: 23 pages, typos corrected, minor modifications, to appear in CQ

    Heterotic String Compactifications on Half-flat Manifolds II

    Full text link
    In this paper, we continue the analysis of heterotic string compactifications on half-flat mirror manifolds by including the 10-dimensional gauge fields. It is argued, that the heterotic Bianchi identity is solved by a variant of the standard embedding. Then, the resulting gauge group in four dimensions is still E6 despite the fact that the Levi-Civita connection has SO(6) holonomy. We derive the associated four-dimensional effective theories including matter field terms for such compactifications. The results are also extended to more general manifolds with SU(3) structure.Comment: 31 page
    • …
    corecore