731 research outputs found
Lawyer Lincoln -- Albert A. Woldman
Review of "Lawyer Lincoln" by Albert A. Woldma
Insider Trading Around Convertible Security Calls
This study examines the nature of insider trading of common stock around conversion-forcing calls of convertible securities. Managers of call firms significantly increase their frequency of stock sales after call announcements. Also after the call, substantially fewer call firms are classified as net buyers and a significantly greater number of call firms are classified as net sellers. This evidence suggests that managers alter their trading behavior as though calls are associated with negative information about their firms' prospects
Recently recycled synaptic vesicles use multi-cytoskeletal transport and differential presynaptic capture probability to establish a retrograde net flux during ISVE in central neurons
Presynapses locally recycle synaptic vesicles to efficiently communicate information. During use and recycling, proteins on the surface of synaptic vesicles break down and become less efficient. In order to maintain efficient presynaptic function and accommodate protein breakdown, new proteins are regularly produced in the soma and trafficked to presynaptic locations where they replace older protein-carrying vesicles. Maintaining a balance of new proteins and older proteins is thus essential for presynaptic maintenance and plasticity. While protein production and turnover have been extensively studied, it is still unclear how older synaptic vesicles are trafficked back to the soma for recycling in order to maintain balance. In the present study, we use a combination of fluorescence microscopy, hippocampal cell cultures, and computational analyses to determine the mechanisms that mediate older synaptic vesicle trafficking back to the soma. We show that synaptic vesicles, which have recently undergone exocytosis, can differentially utilize either the microtubule or the actin cytoskeleton networks. We show that axonally trafficked vesicles traveling with higher speeds utilize the microtubule network and are less likely to be captured by presynapses, while slower vesicles utilize the actin network and are more likely to be captured by presynapses. We also show that retrograde-driven vesicles are less likely to be captured by a neighboring presynapse than anterograde-driven vesicles. We show that the loss of synaptic vesicle with bound molecular motor myosin V is the mechanism that differentiates whether vesicles will utilize the microtubule or actin networks. Finally, we present a theoretical framework of how our experimentally observed retrograde vesicle trafficking bias maintains the balance with previously observed rates of new vesicle trafficking from the soma
On the distortion of twin building lattices
We show that twin building lattices are undistorted in their ambient group;
equivalently, the orbit map of the lattice to the product of the associated
twin buildings is a quasi-isometric embedding. As a consequence, we provide an
estimate of the quasi-flat rank of these lattices, which implies that there are
infinitely many quasi-isometry classes of finitely presented simple groups. In
an appendix, we describe how non-distortion of lattices is related to the
integrability of the structural cocycle
Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago
The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200–800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700–50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures
- …