40 research outputs found

    Accounting for selection bias using simulations: A general method and an application to millimeter-wavelength surveys

    Full text link
    We have developed a new Bayesian method to correct the flux densities of astronomical sources. The hybrid method combines a simulated likelihood to model survey selection together with an analytic source-count-based prior. The simulated likelihood captures the effect of complicated selection methods, such as multi-frequency filtering or imposed restrictions on recovered sample properties (e.g., color cuts). Simulations are also able to capture unanticipated sources of uncertainty. In this way, the method enables a broader application of Bayesian techniques. Use of an analytic prior allows variation of assumed source count models without re-simulating the likelihood. We present the method along with a detailed description of an application to real survey data from the Atacama Cosmology Telescope.Comment: 10 pages. Accepted versio

    Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at z~2

    Get PDF
    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z=1.70, MS1512-cB58 at z=2.73, SGAS J152745.1+065219 at z=2.76 and SGAS J122651.3+215220 at z=2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the H-alpha and [OII] emission lines, and the UV+IR bolometric luminosity where 24 micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z~2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3-7*10^9 M_sun, young ages ~ 100 Myr, little dust content E(B-V)=0.10-0.25, and star formation rates around 20-100 M_sun/yr. Compared to typical values for the galaxy population at z~2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z~2.Comment: 13 pages, 8 figures, Accepted to Ap

    A measurement of the millimetre emission and the Sunyaev–Zel'dovich effect associated with low-frequency radio sources

    Get PDF
    We present a statistical analysis of the millimetre-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev–Zel'dovich (SZ) effect associated with the haloes that host them. We stack data at 148, 218 and 277 GHz from the Atacama Cosmology Telescope at the positions of a large sample of radio AGN selected at 1.4 GHz. The thermal SZ effect associated with the haloes that host the AGN is detected at the 5σ level through its spectral signature, representing a statistical detection of the SZ effect in some of the lowest mass haloes (average M_(200) ≈ 10^(13) M⊙ h^(−1)_(70) studied to date. The relation between the SZ effect and mass (based on weak lensing measurements of radio galaxies) is consistent with that measured by Planck for local bright galaxies. In the context of galaxy evolution models, this study confirms that galaxies with radio AGN also typically support hot gaseous haloes. Adding Herschel observations allows us to show that the SZ signal is not significantly contaminated by dust emission. Finally, we analyse the contribution of radio sources to the angular power spectrum of the cosmic microwave background

    The Atacama Cosmology Telescope: The LABOCA/ACT Survey of Clusters at All Redshifts

    Full text link
    We present a multi-wavelength analysis of eleven Sunyaev Zel'dovich effect (SZE)-selected galaxy clusters (ten with new data) from the Atacama Cosmology Telescope (ACT) southern survey. We have obtained new imaging from the Large APEX Bolometer Camera (345GHz; LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope, the Australia Telescope Compact Array (2.1GHz; ATCA), and the Spectral and Photometric Imaging Receiver (250, 350, and 500 μm500\,\rm\mu m; SPIRE) on the Herschel Space Observatory. Spatially-resolved 345GHz SZE increments with integrated S/N > 5 are found in six clusters. We compute 2.1GHz number counts as a function of cluster-centric radius and find significant enhancements in the counts of bright sources at projected radii θ<θ2500\theta < \theta_{2500}. By extrapolating in frequency, we predict that the combined signals from 2.1GHz-selected radio sources and 345GHz-selected SMGs contaminate the 148GHz SZE decrement signal by ~5% and the 345GHz SZE increment by ~18%. After removing radio source and SMG emission from the SZE signals, we use ACT, LABOCA, and (in some cases) new Herschel SPIRE imaging to place constraints on the clusters' peculiar velocities. The sample's average peculiar velocity relative to the cosmic microwave background is 153±383 km s−1153\pm 383\,\rm km\,s^{-1}.Comment: 19 pages, 11 figures, Accepted for Publication in The Astrophysical Journa

    Cosmological Parameters from Pre-Planck CMB Measurements

    Get PDF
    Recent data from the WMAP, ACT and SPT experiments provide precise measurements of the cosmic microwave background temperature power spectrum over a wide range of angular scales. The combination of these observations is well fit by the standard, spatially flat LCDM cosmological model, constraining six free parameters to within a few percent. The scalar spectral index, n_s = 0.9690 +/- 0.0089, is less than unity at the 3.6 sigma level, consistent with simple models of inflation. The damping tail of the power spectrum at high resolution, combined with the amplitude of gravitational lensing measured by ACT and SPT, constrains the effective number of relativistic species to be N_eff = 3.28 +/- 0.40, in agreement with the standard model's three species of light neutrinos.Comment: 5 pages, 4 figure

    Sunyaev Zel'dovich Effect Observations of Strong Lensing Galaxy Clusters: Probing the Over-Concentration Problem

    Get PDF
    We have measured the Sunyaev Zel'dovich (SZ) effect for a sample of ten strong lensing selected galaxy clusters using the Sunyaev Zel'dovich Array (SZA). The SZA is sensitive to structures on spatial scales of a few arcminutes, while the strong lensing mass modeling constrains the mass at small scales (typically < 30"). Combining the two provides information about the projected concentrations of the strong lensing clusters. The Einstein radii we measure are twice as large as expected given the masses inferred from SZ scaling relations. A Monte Carlo simulation indicates that a sample randomly drawn from the expected distribution would have a larger median Einstein radius than the observed clusters about 3% of the time. The implied overconcentration has been noted in previous studies with smaller samples of lensing clusters. It persists for this sample, with the caveat that this could result from a systematic effect such as if the gas fractions of the strong lensing clusters are substantially below what is expected.Comment: submitte

    The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel'dovich Effect Using the Skewness of the CMB Temperature Distribution

    Get PDF
    We present a detection of the unnormalized skewness induced by the thermal Sunyaev-Zel'dovich (tSZ) effect in filtered Atacama Cosmology Telescope (ACT) 148 GHz cosmic microwave background temperature maps. Contamination due to infrared and radio sources is minimized by template subtraction of resolved sources and by constructing a mask using outlying values in the 218 GHz (tSZ-null) ACT maps. We measure = -31 +- 6 \mu K^3 (measurement error only) or +- 14 \mu K^3 (including cosmic variance error) in the filtered ACT data, a 5-sigma detection. We show that the skewness is a sensitive probe of sigma_8, and use analytic calculations and tSZ simulations to obtain cosmological constraints from this measurement. From this signal alone we infer a value of sigma_8= 0.79 +0.03 -0.03 (68 % C.L.) +0.06 -0.06 (95 % C.L.). Our results demonstrate that measurements of non-Gaussianity can be a useful method for characterizing the tSZ effect and extracting the underlying cosmological information.Comment: 9 pages, 5 figures. Replaced with version accepted by Phys. Rev. D, with improvements to the likelihood function and the IR source treatment; only minor changes in the result
    corecore