30 research outputs found
Scientific Opinion on application EFSAâGMOâBEâ2013â117 for authorisation of genetically modified maize MON 87427 Ă MON 89034 Ă NK603 and subcombinations independently of their origin, for food and feed uses, import and processing submitted under Regulation (EC) No 1829/2003 by Monsanto Company
Scientific opinionRequestor: Competent Authority of BelgiumQuestion number: EFSA-Q-2013-00765In this opinion, the EFSA Panel on Genetically Modified Organisms (GMO Panel) assessed the three-event stack maize MON 87427 9 MON 89034 9 NK603 and its three subcombinations, independently of their origin. The GMO Panel has previously assessed the three single events combined to produce this three-event stack maize and did not identify safety concerns. No new data on the single events, leading to modification of the original conclusions on their safety, were identified. Based on the molecular, agronomic, phenotypic and compositional characteristics, the combination of the single maize events and of the newly expressed proteins in the three-event stack maize did not give rise to issues regarding food and feed safety or nutrition. In the case of accidental release of viable grains of maize MON 87427 9 MON 89034 9 NK603 into the environment, the three-event stack maize would not raise environmental safety concerns. The GMO Panel concludes that the threeevent stack maize is as safe and as nutritious as the non-GM comparator and the tested non-GM reference varieties in the context of its scope. The GMO Panel considered that its previous conclusions on the two-event stack maize MON 89034 9 NK603 remain valid. For the two maize subcombinations for which no experimental data were provided the GMO Panel assessed the likelihood of interactions among the single events, and concluded that their combination would not raise safety concerns. These two subcombinations are therefore expected to be as safe as the single events, the previously assessed maize MON 89034 9 NK603 and maize MON 87427 9 MON 89034 9 NK603. Since the post-market environmental monitoring plan for the three-event stack maize does not include any provisions for the two subcombinations not previously assessed, the GMO Panel recommended the applicant to revise the plan accordingly
Technical Note on the quality of DNA sequencing for the molecular characterisation of genetically modified plants
As part of the risk assessment (RA) requirements for genetically modified (GM) plants, according to Regulation (EU) No 503/2013 and the EFSA guidance on the RA of food and feed from GM plants (EFSA GMO Panel, 2011), applicants need to perform a molecular characterisation of the DNA sequences inserted in the GM plant genome. The European Commission has mandated EFSA to develop a technical note to the applicants on, and checking of, the quality of the methodology, analysis and reporting covering complete sequencing of the insert and flanking regions, insertion site analysis of the GM event, and generational stability and integrity. This Technical Note puts together requirements and recommendations for when DNA sequencing is part of the molecular characterisation of GM plants, in particular for the characterisation of the inserted genetic material at each insertion site and flanking regions, the determination of the copy number of all detectable inserts, and the analysis of the genetic stability of the inserts, when addressed by Sanger sequencing or NGS. This document reflects the current knowledge in scientificâtechnical methods for generating and verifying, in a standardised manner, DNA sequencing data in the context of RA of GM plants. From 1 October 2018, this Technical Note will replace the JRC guideline of 2016 (updated April 2017) related to the verification and quality assessment of the sequencing of the insert(s) and flanking regions. It does not take into consideration the verification and validation of the detection method which remains under the remit of the JRC
Assessment of genetically modified soybean MON 87751 for food and feed uses under Regulation (EC) No 1829/2003 (application EFSAâGMOâNLâ2014â121)
Soybean MON87751 was developed through Agrobacterium tumefaciens-mediated transformation to provide protection certain specific lepidopteran pests by the expression of the Cry1A.105 and Cry2Ab2 proteins derived from Bacillus thuringiensis. The molecular characterisation data and bioinformatic analyses did not identify issues requiring assessment for food and feed safety. None of the compositional, agronomic and phenotypic differences identified between soybean MON87751 and the conventional counterpart required further assessment. The GMO Paneldid not identify safety concerns regarding the toxicity and allergenicity of the Cry1A.105 and Cry2Ab2 proteins as expressed in soybean MON87751, and found no evidence that the genetic modification might significantly change the overall allergenicity of soybean MON87751. The nutritional impact of soybean MON87751-derived food and feed is expected to be the same as those derived from the conventional counterpart and non-GM commercial reference varieties. The GMO Panelconcludes that soybean MON87751, as described in this application, is nutritionally equivalent to and as safe as the conventional counterpart and the non-GM soybean reference varieties tested, and no post-market monitoring of food and feed is considered necessary. In the case of accidental release of viable soybean MON87751 seeds into the environment, soybean MON87751 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of soybean MON87751. In conclusion, soybean MON87751, as described in this application, is as safe as its conventional counterpart and the tested non-GM soybean reference varieties with respect to potential effects on human and animal health and the environment
Guidance for the risk assessment of the presence at low level of genetically modified plant material in imported food and feed under Regulation (EC) No 1829/2003
This document provides guidance for the risk assessment under Regulation (EC) No1829/2003 of the unintended, adventitious or technically unavoidable presence in food and feed of low level of genetically modified plant material intended for markets other than in the European Union. In this context, the presence at low level is defined to be maximum 0.9% of genetically modified plant material per ingredient. This guidance is intended to assist applicants by indicating which scientific requirements of AnnexII of Regulation (EU) No503/2013 are considered necessary for the risk assessment of the presence at low levels of genetically modified plant material in food and feed. (C) 2017 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority
Bioavailability of Macro- and Microelements in Rats Fed Hypercholesterolemic Diets Containing Actinidia arguta Fruits
The aim of this study was to estimate the influence of different cultivars of Actinidia arguta (kiwiberry) on the bioavailability of mineral elements and to examine the mineral profile of rats fed atherogenic diets enriched with kiwiberries. The following cultivars of Actinidia arguta were used: Bingo, M1, Anna, Weiki, Jumbo, and Geneva. Kiwiberry has recently become popular in the market. It is a precious source of biologically active components, vitamins, and minerals. The livers, spleens, and kidneys were examined for mineral contents using the flame atomic absorption spectroscopy method. The bioavailability of Ca, Mg, Fe, Mn, Zn, and Cu was evaluated. The addition of kiwiberries in atherogenic diets increased the contents of Fe in the rat liver. The bioavailability of Mn, Zn, and Cu, calculated on the basis of the contents in the livers, was significantly decreased in rats fed diets with 5% additional kiwiberries. We supposed that the effect of kiwiberry on the bioavailability of the studied minerals may be related to the diet components of bioactive substances present in fruits (polyphenols, vitamins, dietary fiber, and tannins)
Impact of litter size on the hematological and iron status of gilts, sows and newborn piglets: a comparative study of domestic pigs and wild boars
Abstract Background The critically low hepatic iron stores of newborn piglets are considered to be a major cause of neonatal iron deficiency in modern breeds of domestic pig (Sus domestica). The main factor believed to contribute to this phenomenon is large litter size, which has been an objective of selective breeding of pigs for decades. As consequence, iron transferred from the pregnant sow has to be distributed among a greater number of fetuses. Results Here, we investigated whether litter size influences red blood cell (RBC) indices and iron parameters in Polish Large White (PLW) piglets and gilts. Small and large litters were produced by the transfer of different numbers of embryos, derived from the same superovulated donor females, to recipient gilts. Piglets from large litters obtained following routine artificial insemination were also examined. Our results clearly demonstrated that varying the number of piglets in a litter did not affect the RBC and iron status of 1-day-old piglets, with all showing iron deficiency anemia. In contrast, gilts with small litters displayed higher RBC and iron parameters compared to mothers with large litters. A comparative analysis of the RBC status of wild boars (having less than half as many piglets per litter as domestic pigs) and PLW pigs, demonstrated higher RBC count, hemoglobin level and hematocrit value of both wild boar sows and piglets, even compared to small-litter PLW animals. Conclusions These findings provide evidence that RBC and iron status in newborn PLW piglets are not primarily determined by litter size, and indicate the need to study the efficiency of iron transport across the placenta in domestic pig and wild boar females
Scientific Opinion on an application by Dow AgroSciences LLC (EFSAâGMOâNLâ2011â91) for the placing on the market of genetically modified herbicideâtolerant soybean DASâ68416â4 for food and feed uses, import and processing under Regulation (EC) No 1829/2003
Soybean DAS-68416-4 was developed by Agrobacterium tumefaciens-mediated transformation to express the aryloxyalkanoate dioxygenase-12 (AAD-12) protein, conferring tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D) and other related phenoxy herbicides, and the phosphinothricin acetyltransferase (PAT) protein, conferring tolerance to glufosinate ammonium-based herbicides. The molecular characterisation data and bioinformatics analyses did not identify issues requiring further assessment for food/feed safety. The agronomic and phenotypic characteristics tested revealed no relevant differences between soybean DAS-68416-4 and its conventional counterpart, except for 'days to 50% flowering'. The compositional analysis identified no differences requiring further assessment, except for an increase (up to 36%) in lectin activity in soybean DAS-68416-4. Such increase is unlikely to raise additional concerns for food/feed safety and nutrition for soybean DAS-68416-4 as compared to its conventional counterpart and the non-GM reference varieties. There were no concerns regarding the potential toxicity and allergenicity of the two newly expressed proteins, and no evidence that the genetic modification might significantly change the overall allergenicity of soybean DAS-68416-4. Soybean DAS-68416-4 is as nutritious as its conventional counterpart and the non-GM reference varieties. There are no indications of an increased likelihood of establishment and spread of occasional feral soybean DAS-68416-4 plants, unless these are exposed to the intended herbicides. The likelihood of environmental effects resulting from the accidental release of viable seeds from soybean DAS-68416-4 into the environment is therefore very low. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of soybean DAS-68416-4. The GMO Panel concludes that the information available addresses the scientific comments of the Member States and that soybean DAS-68416-4, as described in this application, is as safe as its conventional counterpart and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment in the context of the scope of this application. (C) 2017 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority
Scientific opinion on an application by Dow AgroSciences LLC (EFSAâGMOâNLâ2012â106) for the placing on the market of genetically modified herbicideâtolerant soybean DASâ44406â6 for food and feed uses, import and processing under Regulation (EC) No 1829/2003
Soybean DAS-44406-6 expresses 5-enolpyruvyl-shikimate-3-phosphate synthase (2mEPSPS), conferring tolerance to glyphosate-based herbicides, aryloxyalkanoate dioxygenase (AAD-12), conferring tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D) and other related phenoxy herbicides, and phosphinothricin acetyl transferase (PAT), conferring tolerance to glufosinate ammonium-based herbicides. The molecular characterisation data and bioinformatics analyses did not identify issues requiring assessment for food/feed safety. The agronomic and phenotypic characteristics revealed no relevant differences between soybean DAS-44406-6 and its conventional counterpart, except for pod count, seed count and yield. The compositional analysis identified no differences requiring further assessment, except for an increase (up to 31%) in lectin activity in soybean DAS-44406-6. Such increase is unlikely to raise additional concerns for food/feed safety and nutrition of soybean DAS-44406-6 as compared to its conventional counterpart and non-GM reference varieties. There were no concerns regarding the potential toxicity and allergenicity of the three newly expressed proteins, and no evidence that the genetic modification might significantly change the overall allergenicity of soybean DAS-44406-6. Soybean DAS-44406-6 is as nutritious as its conventional counterpart and the non-GM soybean reference varieties tested. There are no indications of an increased likelihood of establishment and spread of occasional feral soybean DAS-44406-6 plants, unless exposed to the intended herbicides. The likelihood of environmental effects from the accidental release of viable seeds from soybean DAS-44406-6 into the environment is therefore very low. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of soybean DAS-44406-6. In conclusion, the GMO Panel considers that the information available for soybean DAS-44406-6 addresses the scientific comments raised by Member States and that soybean DAS-44406-6, as described in this application, is as safe as its conventional counterpart and non-GM soybean reference varieties with respect to potential effects on human and animal health and the environment in the context of the scope of this application
Scientific Opinion on an application by Dow Agrosciences LLC (EFSA-GMO-NL-2009-68) for placing on the market of cotton 281-24-236 Ă 3006-210-23 Ă MON 88913 for food and feed uses, import and processing under Regulation (EC) No 1829/2003
The Panel on Genetically Modified Organisms of the European Food Safety Authority (GMO Panel) previously assessed the three single events combined to produce a three-event stack cotton 281-24-236 Ă 3006-210-23 Ă MON 88913 and did not identify safety concerns. In this opinion, the GMO Panel assesses only the three-event stack cotton. No new data on the single events, leading to modification of the original conclusions on their safety, were identified. The combination of cotton events 281-24-236, 3006-210-23 and MON 88913 in the three-event stack cotton did not give rise to issues â based on the molecular, agronomic, phenotypic or compositional characteristics â regarding food and feed safety and nutrition. The combination of the newly expressed proteins in the three-event stack cotton did not raise concerns for human and animal health. Considering the introduced traits and the outcome of the comparative analysis, the routes of exposure and limited exposure levels, the GMO Panel concludes that this three-event stack cotton would not raise safety concerns in case of accidental release of viable cottonseeds into the environment. The post-market environmental monitoring plans provided by the applicant are in line with the scope of the three-event stack cotton. No post-market monitoring of food/feed derived from the three-event stack cotton is considered necessary. The GMO Panel concludes that the three-event stack cotton is as safe and as nutritious as its conventional counterpart in the context of its scope
Annual post-market environmental monitoring (PMEM) report on the cultivation of genetically modified maize MON 810 in 2014 from Monsanto Europe S.A.
Following a request from the European Commission, the Panel on Genetically Modified Organisms of the European Food Safety Authority (GMO Panel) assessed the annual post-market environmental monitoring (PMEM) report for the 2014 growing season of maize MON 810 provided by Monsanto Europe S.A. The GMO Panel concludes that the insect resistance monitoring data do not indicate a decrease in susceptibility of field Iberian populations of corn borers to the Cry1Ab protein over the 2014 season. However, as the methodology for insect resistance monitoring remained unchanged compared to previous PMEM reports, the GMO Panel reiterates its previous recommendations for improvement of the insect resistance management plan. The GMO Panel considers that the farmer alert system to report complaints regarding product performance could complement the information obtained from the laboratory bioassays, but encourages the consent holder to provide more information in order to be in a position to appraise its usefulness. The data on general surveillance activities do not indicate any unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810 cultivation in 2014. The GMO Panel reiterates its previous recommendations to improve the methodology for the analysis of farmer questionnaires and conduct of the literature review in future annual PMEM reports on maize MON 810. The GMO Panel urges the consent holder to consider how to make best use of the information recorded in national registers to optimise sampling for farmer questionnaires, and requests to continue reviewing and discussing relevant scientific publications on possible adverse effects of maize MON 810 on rove beetles. Also, the GMO Panel encourages relevant parties to continue developing a methodological framework to use existing networks in the broader context of environmental monitoring