84 research outputs found

    Experience Constructing the Artifact Genome Project (AGP): Managing the Domain\u27s Knowledge One Artifact at a Time

    Get PDF
    While various tools have been created to assist the digital forensics community with acquiring, processing, and organizing evidence and indicating the existence of artifacts, very few attempts have been made to establish a centralized system for archiving artifacts. The Artifact Genome Project (AGP) has aimed to create the largest vetted and freely available digital forensics repository for Curated Forensic Artifacts (CuFAs). This paper details the experience of building, implementing, and maintaining such a system by sharing design decisions, lessons learned, and future work. We also discuss the impact of AGP in both the professional and academic realms of digital forensics. Our work shows promise in the digital forensics academic community to champion the effort in curating digital forensic artifacts by integrating AGP into courses, research endeavors, and collaborative projects

    Sensitivity and representativeness of One-Health surveillance for diseases of zoonotic potential at health facilities relative to household visits in rural Guatemala

    Get PDF
    Most human and animal disease notification systems are unintegrated and passive, resulting in underreporting. Active surveillance can complement passive efforts, but because they are resource-intensive, their attributes must be evaluated. We assessed the sensitivity and representativeness of One-Health surveillance conducted at health facilities compared to health facilities plus monthly household visits in three rural communities of Guatemala. From September 2017 to November 2018, we screened humans for acute diarrheal, febrile and respiratory infectious syndromes and canines, swine, equines and bovines for syndromic events or deaths. We estimated the relative sensitivity as the incidence rate ratio of detecting an event in health facility surveillance compared to household surveillance from Poisson models. We used interaction terms between the surveillance method and sociodemographic factors or time trends to assess effect modification as a measure of relative representativeness. We used generalized additive models with smoothing splines to model incidence over time by surveillance method. We randomized 216 households to health facility surveillance and 198 to health facility surveillance plus monthly household visits. Health facility surveillance alone was less sensitive than when combined with household surveillance by 0.42 (95% CI: 0.34, 0.53), 0.56 (95% CI: 0.39, 0.79), 0.02 (95% CI: 0.00, 0.10), 0.28 (95% CI: 0.15, 0.50) and 0.22 (95% CI: 0.03, 0.92) times for human acute infections, human severe acute infections, and deaths in canines, swine and equines, respectively. Health facility surveillance alone underrepresented Spanish speakers (interaction p-value = 0.0003) and persons in higher economic assets (interaction p-values = 0.0008). The trend in incidence over time was different between the two study groups, with a larger decrease in the group with household surveillance (all interaction p-values <0.10). Surveillance at health facilities under ascertains syndromes in humans and animals which leads to underestimation of the burden of zoonotic disease. The magnitude of under ascertainment was differentially by sociodemographic factors, yielding an unrepresentative sample of health events. However, it is less time-intensive, thus might be sustained over time longer than household surveillance. The choice between methodologies should be evaluated against surveillance goals and available resources

    Surface Doping Quantum Dots with Chemically Active Native Ligands: Controlling Valence without Ligand Exchange

    Get PDF
    One remaining challenge in the field of colloidal semiconductor nanocrystal quantum dots is learning to control the degree of functionalization or valence per nanocrystal. Current quantum dot surface modification strategies rely heavily on ligand exchange, which consists of replacing the nanocrystal\u27s native ligands with carboxylate- or amine-terminated thiols, usually added in excess. Removing the nanocrystal\u27s native ligands can cause etching and introduce surface defects, thus affecting the nanocrystal\u27s optical properties. More importantly, ligand exchange methods fail to control the extent of surface modification or number of functional groups introduced per nanocrystal. Here, we report a fundamentally new surface ligand modification or doping approach aimed at controlling the degree of functionalization or valence per nanocrystal while retaining the nanocrystal\u27s original colloidal and photostability. We show that surface-doped quantum dots capped with chemically active native ligands can be prepared directly from a mixture of ligands with similar chain lengths. Specifically, vinyl and azide-terminated carboxylic acid ligands survive the high temperatures needed for nanocrystal synthesis. The ratio between chemically active and inactive-terminated ligands is maintained on the nanocrystal surface, allowing to control the extent of surface modification by straightforward organic reactions. Using a combination of optical and structural characterization tools, including IR and 2D NMR, we show that carboxylates bind in a bidentate chelate fashion, forming a single monolayer of ligands that are perpendicular to the nanocrystal surface. Moreover, we show that mixtures of ligands with similar chain lengths homogeneously distribute themselves on the nanocrystal surface. We expect this new surface doping approach will be widely applicable to other nanocrystal compositions and morphologies, as well as to many specific applications in biology and materials science

    Dataset for file fragment classification of image file formats

    No full text
    corecore