1,456 research outputs found

    Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damage

    Get PDF
    Sensing of damage, deformation, and mechanical forces is of vital importance in many applications of fiber-reinforced polymer composites, as it allows the structural health and integrity of composite components to be monitored and microdamage to be detected before it leads to catastrophic material failure. Bioinspired and biomimetic approaches to self-sensing and self-reporting materials are reviewed. Examples include bruising coatings and bleeding composites based on dye-filled microcapsules, hollow fibers, and vascular networks. Force-induced changes in color, fluorescence, or luminescence are achieved by mechanochromic epoxy resins, or by mechanophores and force-responsive proteins located at the interface of glass/carbon fibers and polymers. Composites can also feel strain, stress, and damage through embedded optical and electrical sensors, such as fiber Bragg grating sensors, or by resistance measurements of dispersed carbon fibers and carbon nanotubes. Bioinspired composites with the ability to show autonomously if and where they have been damaged lead to a multitude of opportunities for aerospace, automotive, civil engineering, and wind-turbine applications. They range from safety features for the detection of barely visible impact damage, to the real-time monitoring of deformation of load-bearing components

    Sensing of explosive vapor by hybrid perovskites : effect of dimensionality

    Get PDF
    Funding: Engineering and Physical Sciences Research Council under grants EP/T01119X/1 and EP/K503940/1, and the NATO Science for Peace & Security programme under grant agreement MYP G5355.Lead halide perovskites are very promising materials for many optoelectronic devices. They are low cost, photostable, and strongly photoluminescent materials, but so far have been little studied for sensing. In this article, we explore hybrid perovskites as sensors for explosive vapor. We tune the dimensionality of perovskite films in order to modify their exciton binding energy and film morphology and explore the effect on sensing response. We find that tuning from the 3D to the 0D regime increases the PL quenching response of perovskite films to the vapor of dinitrotoluene (DNT)—a molecule commonly found in landmines. We find that films of 0D perovskite nanocrystals work as sensitive and stable sensors, with strong PL responses to DNT molecules at concentrations in the parts per billion range. The PL quenching response can easily be reversed, making the sensors reusable. We compare the response to several explosive vapors and find that the response is strongest for DNT. These results show that hybrid perovskites have great potential for vapor sensing applications.Publisher PDFPeer reviewe

    Chandra Detection of a TypeII Quasar at z=3.288

    Get PDF
    We report on observations of a TypeII quasar at redshift z=3.288, identified as a hard X-ray source in a 185 ks observation with the Chandra X-ray Observatory and as a high-redshift photometric candidate from deep, multiband optical imaging. CXOJ084837.9+445352 (hereinafter CXO52) shows an unusually hard X-ray spectrum from which we infer an absorbing column density N(H) = (4.8+/-2.1)e23 / cm2 (90% confidence) and an implied unabsorbed 2-10 keV rest-frame luminosity of L(2-10) = 3.3e44 ergs/s, well within the quasar regime. Hubble Space Telescope imaging shows CXO52 to be elongated with slight morphological differences between the WFPC2 F814W and NICMOS F160W bands. Optical and near-infrared spectroscopy of CXO52 show high-ionization emission lines with velocity widths ~1000 km/s and flux ratios similar to a Seyfert2 galaxy or radio galaxy. The latter are the only class of high-redshift TypeII luminous AGN which have been extensively studied to date. Unlike radio galaxies, however, CXO52 is radio quiet, remaining undetected at radio wavelengths to fairly deep limits, f(4.8GHz) < 40 microJy. High-redshift TypeII quasars, expected from unification models of active galaxies and long-thought necessary to explain the X-ray background, are poorly constrained observationally with few such systems known. We discuss recent observations of similar TypeII quasars and detail search techniques for such systems: namely (1) X-ray selection, (2) radio selection, (3) multi-color imaging selection, and (4) narrow-band imaging selection. Such studies are likely to begin identifying luminous, high-redshift TypeII systems in large numbers. We discuss the prospects for these studies and their implications to our understanding of the X-ray background.Comment: 28 pages, 5 figures; to appear in The Astrophysical Journa

    Elucidating under-studied aspects of the link between obesity and multiple myeloma: Weight pattern, body shape trajectory, and body fat distribution

    Get PDF
    BACKGROUND: Although obesity is an established modifiable risk factor for multiple myeloma (MM), several nuanced aspects of its relation to MM remain unelucidated, limiting public health and prevention messages. METHODS: We analyzed prospective data from the Nurses\u27 Health Study and Health Professionals Follow-Up Study to examine MM risk associated with 20-year weight patterns in adulthood, body shape trajectory from ages 5 to 60 years, and body fat distribution. For each aforementioned risk factor, we report hazard ratios (HRs) and 95% confidence intervals (CIs) for incident MM from multivariable Cox proportional-hazards models. RESULTS: We documented 582 incident MM cases during 4 280 712 person-years of follow-up. Persons who exhibited extreme weight cycling, for example, those with net weight gain and one or more episodes of intentional loss of at least 20 pounds or whose cumulative intentional weight loss exceeded net weight loss with at least one episode of intentional loss of 20 pounds or more had an increased MM risk compared with individuals who maintained their weight (HR = 1.71, 95% CI = 1.05 to 2.80); the association was statistically nonsignificant after adjustment for body mass index. We identified four body shape trajectories: lean-stable, lean-increase, medium-stable, and medium-increase. MM risk was higher in the medium-increase group than in the lean-stable group (HR = 1.62, 95% CI = 1.22 to 2.14). Additionally, MM risk increased with increasing hip circumference (HR per 1-inch increase: 1.03, 95% CI = 1.01 to 1.06) but was not associated with other body fat distribution measures. CONCLUSIONS: Maintaining a lean and stable weight throughout life may provide the strongest benefit in terms of MM prevention

    Search for Gravitational Waves from Scorpius X-1 in LIGO O3 Data With Corrected Orbital Ephemeris

    Get PDF
    Improved observational constraints on the orbital parameters of the low-mass X-ray binary Scorpius~X-1 were recently published in Killestein et al (2023). In the process, errors were corrected in previous orbital ephemerides, which have been used in searches for continuous gravitational waves from Sco~X-1 using data from the Advanced LIGO detectors. We present the results of a re-analysis of LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo using a model-based cross-correlation search. The corrected region of parameter space, which was not covered by previous searches, was about 1/3 as large as the region searched in the original O3 analysis, reducing the required computing time. We have confirmed that no detectable signal is present over a range of gravitational-wave frequencies from 25Hz25\textrm{Hz} to 1600Hz1600\textrm{Hz}, analogous to the null result of Abbott et al (2022). Our search sensitivity is comparable to that of Abbott et al (2022), who set upper limits corresponding, between 100Hz100\textrm{Hz} and 200Hz200\textrm{Hz}, to an amplitude h0h_0 of about 10−2510^{-25} when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4×10−264\times 10^{-26} assuming the optimal orientation.Comment: 8 pages, 3 figures, 2 tables. Typeset with AASTeX 6.3.1. Accepted for publication in The Astrophysical Journal. arXiv admin note: text overlap with arXiv:2209.0286

    AzTEC half square degree survey of the SHADES fields – I. Maps, catalogues and source counts

    Get PDF
    This article has been accepted for publication in Monthly Notices Of The Royal Astronomical Society ©: 2010 J. E. Austermann et al. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present the first results from the largest deep extragalactic mm-wavelength survey undertaken to date. These results are derived from maps covering over 0.7 deg^(2), made at λ= 1.1 mm, using the AzTEC continuum camera mounted on the James Clerk Maxwell Telescope. The maps were made in the two fields originally targeted at λ= 850 μm with the Submillimetre Common-User Bolometer Array (SCUBA) in the SCUBA Half-Degree Extragalactic Survey (SHADES) project, namely the Lockman Hole East (mapped to a depth of 0.9–1.3 mJy rms) and the Subaru/XMM–Newton Deep Field (mapped to a depth of 1.0–1.7 mJy rms). The wealth of existing and forthcoming deep multifrequency data in these two fields will allow the bright mm source population revealed by these new wide-area 1.1 mm images to be explored in detail in subsequent papers. Here, we present the maps themselves, a catalogue of 114 high-significance submillimetre galaxy detections, and a thorough statistical analysis leading to the most robust determination to date of the 1.1 mm source number counts. These new maps, covering an area nearly three times greater than the SCUBA SHADES maps, currently provide the largest sample of cosmological volumes of the high-redshift Universe in the mm or sub-mm. Through careful comparison, we find that both the Cosmic Evolution Survey (COSMOS) and the Great Observatories Origins Deep Survey (GOODS) North fields, also imaged with AzTEC, contain an excess of mm sources over the new 1.1 mm source-count baseline established here. In particular, our new AzTEC/SHADES results indicate that very luminous high-redshift dust enshrouded starbursts (S1.1mm > 3 mJy) are 25–50 per cent less common than would have been inferred from these smaller surveys, thus highlighting the potential roles of cosmic variance and clustering in such measurements. We compare number count predictions from recent models of the evolving mm/sub-mm source population to these sub-mm bright galaxy surveys, which provide important constraints for the ongoing refinement of semi-analytic and hydrodynamical models of galaxy formation, and find that all available models overpredict the number of bright submillimetre galaxies found in this survey
    • …
    corecore