495 research outputs found
Site assessment of Douglas Shoal ship grounding in the Great Barrier Reef
The bulk carrier Shen Neng 1 ran aground on Douglas Shoal in the Great Barrier Reef Marine Park in April 2010. At over 40 hectares, this is the largest ship grounding scar known in the Great Barrier Reef, and possibly the largest reef-related grounding in the world. Challenges for assessment of the site included its large scale and the remote nature of Douglas Shoal coupled with its high exposure to wind, wave conditions and fauna that may pose safety hazards. Marine surveys used multiple and novel methods including sediment sampling combined with visual and acoustic survey techniques
Boundary of two mixed Bose-Einstein condensates
The boundary of two mixed Bose-Einstein condensates interacting repulsively
was considered in the case of spatial separation at zero temperature.
Analytical expressions for density distribution of condensates were obtained by
solving two coupled nonlinear Gross-Pitaevskii equations in cases corresponding
weak and strong separation. These expressions allow to consider excitation
spectrum of a particle confined in the vicinity of the boundary as well as
surface waves associated with surface tension.Comment: 6 pages, 3 figures, submitted to Phys.Rev.
Trapping of Projectiles in Fixed Scatterer Calculations
We study multiple scattering off nuclei in the closure approximation. Instead
of reducing the dynamics to one particle potential scattering, the scattering
amplitude for fixed target configurations is averaged over the target
groundstate density via stochastic integration. At low energies a strong
coupling limit is found which can not be obtained in a first order optical
potential approximation. As its physical explanation, we propose it to be
caused by trapping of the projectile. We analyse this phenomenon in mean field
and random potential approximations.
(PACS: 24.10.-i)Comment: 15 page
Symmetric-Asymmetric transition in mixtures of Bose-Einstein condensates
We propose a new kind of quantum phase transition in phase separated mixtures
of Bose-Einstein condensates. In this transition, the distribution of the two
components changes from a symmetric to an asymmetric shape. We discuss the
nature of the phase transition, the role of interface tension and the phase
diagram. The symmetric to asymmetric transition is the simplest quantum phase
transition that one can imagine. Careful study of this problem should provide
us new insight into this burgeoning field of discovery.Comment: 6 pages, 3 eps figure
Barrier effects on the collective excitations of split Bose-Einstein condensates
We investigate the collective excitations of a single-species Bose gas at T=0
in a harmonic trap where the confinement undergoes some splitting along one
spatial direction. We mostly consider onedimensional potentials consisting of
two harmonic wells separated a distance 2 z_0, since they essentially contain
all the barrier effects that one may visualize in the 3D situation. We find,
within a hydrodynamic approximation, that regardless the dimensionality of the
system, pairs of levels in the excitation spectrum, corresponding to
neighbouring even and odd excitations, merge together as one increases the
barrier height up to the current value of the chemical potential. The
excitation spectra computed in the hydrodynamical or Thomas-Fermi limit are
compared with the results of exactly solving the time-dependent
Gross-Pitaevskii equation. We analyze as well the characteristics of the
spatial pattern of excitations of threedimensional boson systems according to
the amount of splitting of the condensate.Comment: RevTeX, 12 pages, 13 ps figure
Solutions of Gross-Pitaevskii equations beyond the hydrodynamic approximation: Application to the vortex problem
We develop the multiscale technique to describe excitations of a
Bose-Einstein condensate (BEC) whose characteristic scales are comparable with
the healing length, thus going beyond the conventional hydrodynamical
approximation. As an application of the theory we derive approximate explicit
vortex and other solutions. The dynamical stability of the vortex is discussed
on the basis of the mathematical framework developed here, the result being
that its stability is granted at least up to times of the order of seconds,
which is the condensate lifetime. Our analytical results are confirmed by the
numerical simulations.Comment: To appear in Phys. Rev.
Spinor condensates and light scattering from Bose-Einstein condensates
These notes discuss two aspects of the physics of atomic Bose-Einstein
condensates: optical properties and spinor condensates. The first topic
includes light scattering experiments which probe the excitations of a
condensate in both the free-particle and phonon regime. At higher light
intensity, a new form of superradiance and phase-coherent matter wave
amplification were observed. We also discuss properties of spinor condensates
and describe studies of ground--state spin domain structures and dynamical
studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999
Summer School, Session LXXI
- …