159 research outputs found

    Shock wave compression of iron-silicate garnet

    Get PDF
    Shock wave Hugoniot data have been obtained for almandine-garnet of composition (Fe_(0.79), Mg_(0.14), Ca_(0.04), Mn_(0.03)) Al_2Si_3O_(12) to pressures of >650 kb. The Hugoniot data indicate the onset of a high-pressure phase at 195 ± 20 kb. Equation-of-state systematics and crystal chemical data (stemming largely from analog compounds) suggest that the high-pressure phase occurs in an ‘ilmenitelike’ structure with an initial density of 4.44 ± 0.04 g/cm^3. This value represents an increase of about 6% over the initial garnet density of 4.180 ± 0.005 g/cm^3. The adiabatic bulk modulus K_0^s and its first pressure derivative (∂K^s/∂P)_T were calculated for the high-pressure phase and found to be 3.19 ± 0.39 Mb and 2.6 ± 0.7, respectively. The major source of probable error in these values results from the indicated uncertainty in the initial density of the high-pressure phase. These results strongly suggest that upper mantle minerals are likely to occur in the ilmenite structure over a substantial part of the lower mantle

    Assessing the Quality of Care for Pneumonia in Integrated Community Case Management: A Cross-Sectional Mixed Methods Study

    Get PDF
    Background Pneumonia is the leading infectious cause of mortality in children under five worldwide. Community-level interventions, such as integrated community case management, have great potential to reduce the burden of pneumonia, as well as other diseases, especially in remote populations. However, there are still questions as to whether community health workers (CHW) are able to accurately assess symptoms of pneumonia and prescribe appropriate treatment. This research addresses limitations of previous studies using innovative methodology to assess the accuracy of respiratory rate measurement by CHWs and provides new evidence on the quality of care given for children with symptoms of pneumonia. It is one of few that assesses CHW performance in their usual setting, with independent re-examination by experts, following a considerable period of time post-training of CHWs. Methods In this cross-sectional mixed methods study, 1,497 CHW consultations, conducted by 90 CHWs in two districts of Luapula province, Zambia, were directly observed, with measurement of respiratory rate for children with suspected pneumonia recorded by video. Using the video footage, a retrospective reference standard assessment of respiratory rate was conducted by experts. Counts taken by CHWs were compared against the reference standard and appropriateness of the treatment prescribed by CHWs was assessed. To supplement observational findings, three focus group discussions and nine in depth interviews with CHWs were conducted. Results and Conclusion The findings support existing literature that CHWs are capable of measuring respiratory rates and providing appropriate treatment, with 81% and 78% agreement, respectively, between CHWs and experts. Accuracy in diagnosis could be strengthened through further training and the development of improved diagnostic tools appropriate for resource-poor settings

    Young People and Alternative Provision: Perspectives from participatory-collaborative evaluations in three UK Local Authorities

    Get PDF
    This paper reports the findings of four separately commissioned evaluations of Alternative Provision (AP) undertaken in three Local Authorities in the UK. The evaluations were specifically predicated on the principles of children’s rights and used a combination of qualitative research methods and documentary analysis to elicit the experiences of young people in conjunction with the viewpoints of key stake-holders. Data from each evaluation was gathered over a total period of 6 years. The sites and time scales for each evaluation varied from 6-month authority-wide strategic reviews, a 3-year evaluation of an AP Free School and an evaluation of pupil referrals in a large school partnership. The evaluations involved 200 participant children and young people, 30 managers and stakeholders, 8 parents of non-attending pupils and Local Authority Officers and School Governors. The evaluations report the complexity of needs amongst children and young people; the continuing problem of unsuccessful transitions between key phases/stages of education and the profound consequences of this for young people; assumptions around mainstream reintegration and managed moves; and the curriculum challenges of vocationalism and academic emphasis. While the research data confirms the positive value of multi-agency approaches in AP it also shows a more recent troubling increase in the number of young people now being referred to AP as a consequence of their exposure to performative school cultures

    Executive summary: heart disease and stroke statistics--2014 update: a report from the American Heart Association.

    Get PDF
    Each year, the American Heart Association (AHA), in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update. The Statistical Update is a critical resource for researchers, clinicians, healthcare policy makers, media professionals, the lay public, and many others who seek the best available national data on heart disease, stroke, and other cardiovascular disease-related morbidity and mortality and the risks, quality of care, use of medical procedures and operations, and costs associated with the management of these diseases in a single document. Indeed, since 1999, the Statistical Update has been cited >10 500 times in the literature, based on citations of all annual versions. In 2012 alone, the various Statistical Updates were cited ≈3500 times (data from Google Scholar). In recent years, the Statistical Update has undergone some major changes with the addition of new chapters and major updates across multiple areas, as well as increasing the number of ways to access and use the information assembled. For this year's edition, the Statistics Committee, which produces the document for the AHA, updated all of the current chapters with the most recent nationally representative data and inclusion of relevant articles from the literature over the past year. This year's edition includes a new chapter on peripheral artery disease, as well as new data on the monitoring and benefits of cardiovascular health in the population, with additional new focus on evidence-based approaches to changing behaviors, implementation strategies, and implications of the AHA's 2020 Impact Goals. Below are a few highlights from this year's Update. © 2013 American Heart Association, Inc

    Executive summary: heart disease and stroke statistics--2013 update: a report from the American Heart Association.

    Get PDF
    Each year, the American Heart Association (AHA), in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update*The Statistical Update is a valuable resource for researchers, clinicians, healthcare policy makers, media professionals, the lay public, and many others who seek the best national data available on heart disease, stroke, and other cardiovascular disease-related morbidity and mortality and the risks, quality of care, medical procedures and operations, and costs associated with the management of these diseases in a single document*Indeed, since 1999, the Statistical Update has been cited \u3e10 500 times in the literature, based on citations of all annual versions*In 2011 alone, the various Statistical Updates were cited ≈1500 times (data from ISI Web of Science)*In recent years, the Statistical Update has undergone some major changes with the addition of new chapters and major updates across multiple areas, as well as increasing the number of ways to access and use the information assembled*For this year\u27s edition, the Statistics Committee, which produces the document for the AHA, updated all of the current chapters with the most recent nationally representative data and inclusion of relevant articles from the literature over the past year*This year\u27s edition also implements a new chapter organization to reflect the spectrum of cardiovascular health behaviors and health factors and risks, as well as subsequent complicating conditions, disease states, and outcomes*Also, the 2013 Statistical Update contains new data on the monitoring and benefits of cardiovascular health in the population, with additional new focus on evidence-based approaches to changing behaviors, implementation strategies, and implications of the AHA\u27s 2020 Impact Goals*Below are a few highlights from this year\u27s Update . © 2013 American Heart Association, Inc

    20 years of research on the Alcator C-Mod tokamak

    Get PDF
    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99ER54512)United States. Dept. of Energy (Cooperative Agreement DE-FG03-94ER-54241)United States. Dept. of Energy (Cooperative Agreement DE-AC02-78ET- 51013)United States. Dept. of Energy (Cooperative Agreement DE-AC02-09CH11466)United States. Dept. of Energy (Cooperative Agreement DE-FG02-95ER54309)United States. Dept. of Energy (Cooperative Agreement DE-AC02-05CH11231)United States. Dept. of Energy (Cooperative Agreement DE-AC52-07NA27344)United States. Dept. of Energy (Cooperative Agreement DE-FG02- 97ER54392)United States. Dept. of Energy (Cooperative Agreement DE-SC00-02060
    corecore