40,710 research outputs found

    Temporal evolution of multiple evaporating ribbon sources in a solar flare

    Get PDF
    We present new results from the Interface Region Imaging Spectrograph showing the dynamic evolution of chromospheric evaporation and condensation in a flare ribbon, with the highest temporal and spatial resolution to date. IRIS observed the entire impulsive phase of the X-class flare SOL2014-09-10T17:45 using a 9.4 second cadence `sit-and-stare' mode. As the ribbon brightened successively at new positions along the slit, a unique impulsive phase evolution was observed for many tens of individual pixels in both coronal and chromospheric lines. Each activation of a new footpoint displays the same initial coronal up-flows of up to ~300 km/s, and chromospheric downflows up to 40 km/s. Although the coronal flows can be delayed by over 1 minute with respect to those in the chromosphere, the temporal evolution of flows is strikingly similar between all pixels, and consistent with predictions from hydrodynamic flare models. Given the large sample of independent footpoints, we conclude that each flaring pixel can be considered a prototypical, `elementary' flare kernel.Comment: Accepted for publication - ApJ letter

    Manual control theory applied to air traffic controller-pilot cooperation

    Get PDF
    Reduced runway separation standards are among the means which have been proposed for increasing airport capacity. The probability of a blunder will dominate the calculation of safe separation standards. Then the determinant of safe system performance will be the system reaction time comprised of the air traffic controller's detection, decision and communication delays, and the response times of the pilot and aircraft in executing a collision avoidance manuever. Estimates of these times, based on existing data, show that the delays ascribable to the human portions of the man-machine system are comparatively unimportant. New developments in radar, computers, and data links will be required to provide any substantial improvement of the existing system, and the goal of 2500 ft of separation may not be achievable

    Particle production and reheating in the inflationary universe

    Full text link
    Thermal field theory is applied to particle production rates in inflationary models, leading to new results for catalysed, or two-stage decay, where massive fields act as decay channels for the production of light fields. A numerical investigation of the Bolztmann equation in an expanding universe shows that the particle distributions produced during small amplitude inflaton oscillations or alongside slowly moving inflaton fields can thermalise.Comment: 16 pages, 12 figures, LaTeX, extra references in v

    Mechanism of margination in confined flows of blood and other multicomponent suspensions

    Full text link
    Flowing blood displays a phenomenon called margination, in which leukocytes and platelets are preferentially found near blood vessel walls, while erythrocytes are depleted from these regions. Here margination is investigated using direct hydrodynamic simulations of a binary suspension of stiff (s) and floppy (f) capsules, as well as a stochastic model that incorporates the key particle transport mechanisms in suspensions -- wall-induced hydrodynamic migration and shear-induced pair collisions. The stochastic model allows the relative importance of these two mechanisms to be directly evaluated and thereby indicates that margination, at least in the dilute case, is largely due to the differential dynamics of homogeneous (e.g. s-s) and heterogeneous (s-f) collisionsComment: 5 Pages, 4 figure

    Sea state and rain: a second take on dual-frequency altimetry

    Get PDF
    TOPEX and Jason were the first two dual-frequency altimeters in space, with both operating at Ku- and C-band. Each thus gives two measurements of the normalized backscatter, sigma0, (from which wind speed is calculated) and two estimates of wave height. Departures from a well-defined relationship between the Ku- and C-band sigma0 values give an indication of rain.This paper investigates differences between the two instruments using data from Jason's verification phase. Jason's Ku-band estimates of wave height are ~1.8% less than TOPEX's, whereas its sigma0 values are higher. When these effects have been removed the root mean square (r.m.s.) mismatch between TOPEX and Jason's Ku-band observations is close to that for TOPEX's observations at its two frequencies, and the changes in sigma0 with varying wave height conditions are the same for the two altimeters. Rain flagging and quantitative estimates of rain rate are both based on the atmospheric attenuation derived from the sigma0 measurements at the two frequencies. The attenuation estimates of TOPEX and Jason agree very well, and a threshold of -0.5 dB is effective at removing the majority of spurious data records from the Jason GDRs. In the high sigma0 regime, anomalous data can be cause by processes other than rain. Consequently, for these low wind conditions, neither can reliable rain detection be based on altimetry alone, nor can a generic rain flag be expected to remove all suspect data

    Coarse Brownian Dynamics for Nematic Liquid Crystals: Bifurcation Diagrams via Stochastic Simulation

    Full text link
    We demonstrate how time-integration of stochastic differential equations (i.e. Brownian dynamics simulations) can be combined with continuum numerical bifurcation analysis techniques to analyze the dynamics of liquid crystalline polymers (LCPs). Sidestepping the necessity of obtaining explicit closures, the approach analyzes the (unavailable in closed form) coarse macroscopic equations, estimating the necessary quantities through appropriately initialized, short bursts of Brownian dynamics simulation. Through this approach, both stable and unstable branches of the equilibrium bifurcation diagram are obtained for the Doi model of LCPs and their coarse stability is estimated. Additional macroscopic computational tasks enabled through this approach, such as coarse projective integration and coarse stabilizing controller design, are also demonstrated

    Lithologies contributing to the clast population in Apollo 17 LKFM basaltic impact melts

    Get PDF
    LKFM basaltic impact melts are abundant among Apollo lunar samples, especially those from Apollo 15, 16, and 17. They are generally basaltic in composition, but are found exclusively as impact melts. They seem to be related to basins and so could represent the composition of the lower lunar crust. They contain lithic clasts that cannot be mixed in any proportion to produce the composition of the melt matrix; components rich in transition elements (Ti, Cr, Sc) and REE are not considered. To search for the mysterious cryptic component, we previously investigated the mineral clast population in two Apollo 14 LKFM basaltic impact melts, 15445 and 15455. The cryptic component was not present in the mineral clast assemblage of these breccias either, but some olivine and pyroxene grains appeared to be from lithologies not represented among identified igneous rocks from the lunar highlands. In addition, none of the mineral clasts could be unambiguously assigned to a ferroan anorthosite source. We have now extended this study to Apollo 17, starting with two LKFM impact melt breccias (76295 and 76315) from the Apollo 17 station 6 boulder. The results from the study are presented
    • …
    corecore