18 research outputs found

    Long-Term Non-Progression and Broad HIV-1-Specific Proliferative T-Cell Responses.

    Get PDF
    Complex mechanisms underlying the maintenance of fully functional, proliferative, HIV-1-specific T-cell responses involve processes from early T-cell development through to the final stages of T-cell differentiation and antigen recognition. Virus-specific proliferative CD4 and CD8 T-cell responses, important for the control of infection, are observed in some HIV-1(+) patients during early stages of disease, and are maintained in long-term non-progressing subjects. In the vast majority of HIV-1(+) patients, full immune functionality is lost when proliferative HIV-1-specific T-cell responses undergo a variable progressive decline throughout the course of chronic infection. This appears irreparable despite administration of potent combination antiretroviral therapy, which to date is non-curative, necessitating life-long administration and the development of effective, novel, therapeutic interventions. While a sterilizing cure, involving clearance of virus from the host, remains a primary aim, a “functional cure” may be a more feasible goal with considerable impact on worldwide HIV-1 infection. Such an approach would enable long-term co-existence of host and virus in the absence of toxic and costly drugs. Effective immune homeostasis coupled with a balanced response appropriately targeting conserved viral antigens, in a manner that avoids hyperactivation and exhaustion, may prove to be the strongest correlate of durable viral control. This review describes novel concepts underlying full immune functionality in the context of HIV-1 infection, which may be utilized in future strategies designed to improve upon existing therapy. The aim will be to induce long-term non-progressor or elite controller status in every infected host, through immune-mediated control of viremia and reduction of viral reservoirs, leading to lower HIV-1 transmission rates

    An Atlas of Human Regulatory T Helper-like Cells Reveals Features of Th2-like Tregs that Support a Tumorigenic Environment

    Get PDF
    Regulatory T cells (Tregs) play a pivotal role in maintaining immunological tolerance, but they can also play a detrimental role by preventing antitumor responses. Here, we characterized T helper (Th)-like Treg subsets to further delineate their biological function and tissue distribution, focusing on their possible contribution to disease states. RNA sequencing and functional assays revealed that Th2-like Tregs displayed higher viability and autocrine interleukin-2 (IL-2)-mediated activation than other subsets. Th2-like Tregs were preferentially found in tissues rather than circulation and exhibited the highest migratory capacity toward chemokines enriched at tumor sites. These cellular responses led us to hypothesize that this subset could play a role in maintaining a tumorigenic environment. Concurrently, Th2-like Tregs were enriched specifically in malignant tissues from patients with melanoma and colorectal cancer compared to healthy tissue. Overall, our results suggest that Th2-like Tregs may contribute to a tumorigenic environment due to their increased cell survival, higher migratory capacity, and selective T-effector suppressive ability. Graphical Abstrac

    Plasma Sex Steroid Levels and Steroidogenesis in the Gonad of the Self-fertilizing Fish Rivulus marmoratus

    Get PDF
    The mangrove killifish, Rivulus marmoratus, is the only known self-fertilizing vertebrate. This species is sexually dimorphic; sexually mature individuals are either hermaphrodite or primary and secondary males. Although the mangrove killifish has a unique reproductive strategy, there has been no study on the reproductive endocrinology of this species. Thus we investigated plasma sex steroid hormone levels and steroidogenesis in the gonads of R. marmoratus by enzyme linked immunosorbent assay (ELISA). Plasma 17β-estradiol (E2) and 11-ketotestosterone (11-KT) were detected both in hermaphrodite and in primary male. Ovarian follicles (follicle-enclosed oocytes) from hermaphrodites, which were categorized into early yolk stage and late yolk stage, and testis tissue of primary males were cultured with different concentrations of 17α-hydroxyprogesterone (OHP) or testosterone (T) for 24 h. Production of T, E2, 11-KT and 17α-20 β-dihydroxy-4-pregnen-3-one (17α,20β-P) in the medium from tissue culture were measured by ELISA. Early and late ovarian follicles of hermaphrodites and testis pieces of primary males synchronously secreted E2, 11-KT, and 17α,20β-P following incubation with OHP or T. We conclude that both hermaphrodite and primary male of the mangrove killifish secrete estrogen, androgen, and progestin synchronously

    Differences in life-history traits in two clonal strains of the self-fertilizing fish, Rivulus marmoratus

    Get PDF
    We compared life-history traits such as fecundity, sex ratio, reproductive cycle, age at sexual maturity, embryonic period, egg size, early growth and morphology in two clonal strains (PAN-RS and DAN) of the mangrove killifish, Rivulus marmoratus, under constant rearing conditions. We found a positive relationship between growth and reproductive effort. Fecundity was significantly higher in the PAN-RS strain than in the DAN strain. The sex ratio was significantly different, with DAN producing more primary males than PAN-RS. Spawning and ovulation cycle did not clearly differ between the strains. PAN-RS showed a significantly higher growth rate than DAN from 0 to 100 days after hatching, however, age at sexual maturity, embryonic period, egg size, and morphometric and meristic characteristics (vertebral and fin-ray counts) did not differ between the two strains. The high fecundity of PAN-RS may provide an increased chance of offspring survival, while the attainment of sexual maturity at a smaller size in DAN may allow them to invest earlier in reproduction to increase breeding success. Variations in the life-history traits of PAN-RS and DAN may be adaptive strategies for life in their natural habitat, which consists of mangrove estuaries with a highly variable environment

    A novel osteotropic biomaterial OG-PLG: In vitro efficacy

    No full text
    Previously, a novel osteotropic biomaterial, OG-PLG [simvastatin grafted to poly(actide-co-glycolide), PLG], was synthesized and shown to have degradation-controlled release kinetics. The objective here was to determine the effect of grafting statins to PLG on bone regeneration in vitro. Rat bone marrow cells were stimulated in vitro with simvastatin dissolved in media, saponified simvastatin dissolved in media, simvastatin released through diffusion from emulsion freeze-dried scaffolds, and OG-PLG. Unstimulated cultures and cultures stimulated with dexamethasone were used as negative and positive controls, respectively. In vitro bone formation was assessed using the alkaline phosphatase (ALP) and von Kossa assays at different times up to 16 days. ALP analysis revealed that saponified simvastatin at 10-7 M and OG-PLG significantly increased ALP expression at various time points, von Kossa assay showed that simvastatin, saponified simvastatin, and OG-PLG significantly enhanced mineralization, with the effect from OG-PLG being the most significant. In short, OG-PLG significantly enhanced in vitro bone cell mineralization beyond the effect of simvastatin or saponified simvastatin dissolved in media and simvastatin released via diffusion from scaffolds
    corecore