4,619 research outputs found
Fundamentals of the oxidation protection of columbium and tantalum Semiannual report, Apr. 1 - Oct. 1, 1967
Oxidation protection of niobium and tantalum by their silicide
Fundamentals of the oxidation protection of columbium and tantalum Semiannual report, 1 Apr. - 1 Oct. 1969
Oxidation protection by silicides of niobium and tantalum, and thermochemical dat
Fundamentals of the oxidation protection of tantalum Final report
Fundamentals of oxidation protection of tantalum by silicide
Ask a Feminist: Gender and the Rise of the Global Right
For this edition of “Ask a Feminist,” Cynthia Enloe-feminist, activist, writer, scholar, and research professor at Clark University-speaks with special issue editors Suzanna Danuta Walters, Ratna Kapur, and Agnieszka Graff about the relations between gender and militarism and imperialism, in particular about the role of gender in the rise of the imperialist, fascist (or neofascist), populist (or neopopulist) social movements that seem to be spanning the globe
Wannier-Stark ladders in one-dimensional elastic systems
The optical analogues of Bloch oscillations and their associated
Wannier-Stark ladders have been recently analyzed. In this paper we propose an
elastic realization of these ladders, employing for this purpose the torsional
vibrations of specially designed one-dimensional elastic systems. We have
measured, for the first time, the ladder wave amplitudes, which are not
directly accessible either in the quantum mechanical or optical cases. The wave
amplitudes are spatially localized and coincide rather well with theoretically
predicted amplitudes. The rods we analyze can be used to localize different
frequencies in different parts of the elastic systems and viceversa.Comment: 10 pages, 6 figures, accepted in Phys. Rev. Let
Fish evacuate smoothly respecting a social bubble
Crowd movements are observed among different species and on different scales,
from insects to mammals, as well as in non-cognitive systems, such as motile
cells. When forced to escape through a narrow opening, most terrestrial animals
behave like granular materials and clogging events decrease the efficiency of
the evacuation. Here, we explore the evacuation behavior of macroscopic,
aquatic agents, neon fish, and challenge their gregarious behavior by forcing
the school through a constricted passage. Using a statistical analysis method
developed for granular matter and applied to crowd evacuation, our results
clearly show that, unlike crowds of people or herds of sheep, no clogging
occurs at the bottleneck. The fish do not collide and wait for a minimum
waiting time between two successive exits, while respecting a social distance.
When the constriction becomes similar to or smaller than their social distance,
the individual domains defined by this cognitive distance are deformed and fish
density increases. We show that the current of escaping fish behaves like a set
of deformable 2D-bubbles, their 2D domain, passing through a constriction.
Schools of fish show that, by respecting social rules, a crowd of individuals
can evacuate without clogging, even in an emergency situation.Comment: 7 pages, 4 figure
Neuropathologic basis of frontotemporal dementia in progressive supranuclear palsy.
BackgroundProgressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by neuronal loss in the extrapyramidal system with pathologic accumulation of tau in neurons and glia. The most common clinical presentation of PSP, referred to as Richardson syndrome, is that of atypical parkinsonism with vertical gaze palsy, axial rigidity, and frequent falls. Although cognitive deficits in PSP are often ascribed to subcortical dysfunction, a subset of patients has dementia with behavioral features similar to the behavioral variant of frontotemporal dementia. In this study we aimed to identify the clinical and pathological characteristics of PSP presenting with frontotemporal dementia.MethodsIn this study, we compared clinical and pathologic characteristics of 31 patients with PSP with Richardson syndrome with 15 patients with PSP with frontotemporal dementia. For pathological analysis, we used semiquantitative methods to assess neuronal and glial lesions with tau immunohistochemistry, as well image analysis of tau burden using digital microscopic methods.ResultsWe found greater frontal and temporal neocortical neuronal tau pathology in PSP with frontotemporal dementia compared with PSP with Richardson syndrome. White matter tau pathology was also greater in PSP with frontotemporal dementia than PSP with Richardson syndrome. Genetic and demographic factors were not associated with atypical distribution of tau pathology in PSP with frontotemporal dementia.ConclusionsThe results confirm the subset of cognitive-predominant PSP mimicking frontotemporal dementia in PSP. PSP with frontotemporal dementia has distinct clinical features that differ from PSP with Richardson syndrome, as well as differences in distribution and density of tau pathology. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society
Angular Radii of Stars via Microlensing
We outline a method by which the angular radii of giant and main sequence
stars in the Galactic bulge can be measured to a few percent accuracy. The
method combines ground-based photometry of caustic-crossing bulge microlensing
events, with a handful of precise astrometric measurements of the lensed star
during the event, to measure the angular radius of the source, theta_*. Dense
photometric coverage of one caustic crossing yields the crossing timescale dt.
Less frequent coverage of the entire event yields the Einstein timescale t_E
and the angle phi of source trajectory with respect to the caustic. The
photometric light curve solution predicts the motion of the source centroid up
to an orientation on the sky and overall scale. A few precise astrometric
measurements therefore yield theta_E, the angular Einstein ring radius. Then
the angular radius of the source is obtained by theta_*=theta_E(dt/t_E)
sin(phi). We argue that theta_* should be measurable to a few percent accuracy
for Galactic bulge giant stars using ground-based photometry from a network of
small (1m-class) telescopes, combined with astrometric observations with a
precision of ~10 microarcsec to measure theta_E. We find that a factor of ~50
times fewer photons are required to measure theta_E to a given precision for
binary-lens events than single-lens events. Adopting parameters appropriate to
the Space Interferometry Mission (SIM), ~7 min of SIM time is required to
measure theta_E to ~5% accuracy for giant sources in the bulge. For
main-sequence sources, theta_E can be measured to ~15% accuracy in ~1.4 hours.
With 10 hrs of SIM time, it should be possible to measure theta_* to ~5% for
\~80 giant stars, or to 15% for ~7 main sequence stars. A byproduct of such a
campaign is a significant sample of precise binary-lens mass measurements.Comment: 13 pages, 3 figures. Revised version, minor changes, required SIM
integration times revised upward by ~60%. Accepted to ApJ, to appear in the
March 20, 2003 issue (v586
Elastic Wave Transmission at an Abrupt Junction in a Thin Plate, with Application to Heat Transport and Vibrations in Mesoscopic Systems
The transmission coefficient for vibrational waves crossing an abrupt
junction between two thin elastic plates of different widths is calculated.
These calculations are relevant to ballistic phonon thermal transport at low
temperatures in mesoscopic systems and the Q for vibrations in mesoscopic
oscillators. Complete results are calculated in a simple scalar model of the
elastic waves, and results for long wavelength modes are calculated using the
full elasticity theory calculation. We suggest that thin plate elasticty theory
provide a useful and tractable approximation to the full three dimensional
geometry.Comment: 35 pages, including 12 figure
Anomalous quantum chaotic behavior in nanoelectromechanical structures
It is predicted that for sufficiently strong electron-phonon coupling an
anomalous quantum chaotic behavior develops in certain types of suspended
electro-mechanical nanostructures, here comprised by a thin cylindrical quantum
dot (billiard) on a suspended rectangular dielectric plate. The deformation
potential and piezoelectric interactions are considered. As a result of the
electron-phonon coupling between the two systems the spectral statistics of the
electro-mechanic eigenenergies exhibit an anomalous behavior. If the center of
the quantum dot is located at one of the symmetry axes of the rectangular
plate, the energy level distributions correspond to the Gaussian Orthogonal
Ensemble (GOE), otherwise they belong to the Gaussian Unitary Ensemble (GUE),
even though the system is time-reversal invariant.Comment: 4 pages, pdf forma
- …