5,846 research outputs found
The heat kernel expansion for the electromagnetic field in a cavity
We derive the first six coefficients of the heat kernel expansion for the
electromagnetic field in a cavity by relating it to the expansion for the
Laplace operator acting on forms. As an application we verify that the
electromagnetic Casimir energy is finite.Comment: 12 page
Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene
We present Raman spectroscopy measurements on single- and few-layer graphene
flakes. Using a scanning confocal approach we collect spectral data with
spatial resolution, which allows us to directly compare Raman images with
scanning force micrographs. Single-layer graphene can be distinguished from
double- and few-layer by the width of the D' line: the single peak for
single-layer graphene splits into different peaks for the double-layer. These
findings are explained using the double-resonant Raman model based on ab-initio
calculations of the electronic structure and of the phonon dispersion. We
investigate the D line intensity and find no defects within the flake. A finite
D line response originating from the edges can be attributed either to defects
or to the breakdown of translational symmetry
Quantum oscillations and a non-trivial Berry phase in the noncentrosymmetric superconductor BiPd
We report the measurements of de Haas-van Alphen (dHvA) oscillations in the
noncentrosymmetric superconductor BiPd. Several pieces of a complex multi-sheet
Fermi surface are identified, including a small pocket (frequency 40 T) which
is three dimensional and anisotropic. From the temperature dependence of the
amplitude of the oscillations, the cyclotron effective mass is (
0.1) . Further analysis showed a non-trivial -Berry phase is
associated with the 40 T pocket, which strongly supports the presence of
topological states in bulk BiPd and may result in topological superconductivity
due to the proximity coupling to other bands.Comment: 5 pages, 3 figure
Raman imaging of doping domains in graphene on SiO2
We present spatially resolved Raman images of the G and 2D lines of
single-layer graphene flakes. The spatial fluctuations of G and 2D lines are
correlated and are thus shown to be affiliated with local doping domains. We
investigate the position of the 2D line -- the most significant Raman peak to
identify single-layer graphene -- as a function of charging up to |n|~4 10^12
cm^-2. Contrary to the G line which exhibits a strong and symmetric stiffening
with respect to electron and hole-doping, the 2D line shows a weak and slightly
asymmetric stiffening for low doping. Additionally, the line width of the 2D
line is, in contrast to the G line, doping-independent making this quantity a
reliable measure for identifying single-layer graphene
Tunable Coulomb blockade in nanostructured graphene
We report on Coulomb blockade and Coulomb diamond measurements on an etched,
tunable single-layer graphene quantum dot. The device consisting of a graphene
island connected via two narrow graphene constrictions is fully tunable by
three lateral graphene gates. Coulomb blockade resonances are observed and from
Coulomb diamond measurements a charging energy of ~3.5 meV is extracted. For
increasing temperatures we detect a peak broadening and a transmission increase
of the nanostructured graphene barriers
Coulomb oscillations in three-layer graphene nanostructures
We present transport measurements on a tunable three-layer graphene single
electron transistor (SET). The device consists of an etched three-layer
graphene flake with two narrow constrictions separating the island from source
and drain contacts. Three lateral graphene gates are used to electrostatically
tune the device. An individual three-layer graphene constriction has been
investigated separately showing a transport gap near the charge neutrality
point. The graphene tunneling barriers show a strongly nonmonotonic coupling as
function of gate voltage indicating the presence of localized states in the
constrictions. We show Coulomb oscillations and Coulomb diamond measurements
proving the functionality of the graphene SET. A charging energy of meV is extracted.Comment: 10 pages, 6 figure
Local gating of a graphene Hall bar by graphene side gates
We have investigated the magnetotransport properties of a single-layer
graphene Hall bar with additional graphene side gates. The side gating in the
absence of a magnetic field can be modeled by considering two parallel
conducting channels within the Hall bar. This results in an average penetration
depth of the side gate created field of approx. 90 nm. The side gates are also
effective in the quantum Hall regime, and allow to modify the longitudinal and
Hall resistances
- …