11,229 research outputs found

    Scattering of magnetic edge states

    Full text link
    We consider a charged particle following the boundary of a two-dimensional domain because a homogeneous magnetic field is applied. We develop the basic scattering theory for the corresponding quantum mechanical edge states. The scattering phase attains a limit for large magnetic fields which we interpret in terms of classical trajectories.Comment: 34 pages, 2 figure

    High-pressure Debye-Waller and Grueneisen parameters of Au and Cu

    Full text link
    The lattice vibrations are determined in the quasi-harmonic approximation for elemental Au and Cu to twice their normal density by first-principles electronic band-structure calculations. It is found for these materials that the important moments of the phonon density of states can be obtained to high accuracy from short-ranged force constant models. We discuss the implications for the Grueneisen parameters on the basis of calculated phonon moments and their approximations by using bulk moduli and Debye-Waller factors.Comment: 4 pages, 2 figures to appear in the proceedings of the 13th APS Topical Conference on Shock Compression of Condensed Matter (scheduled for April 2004

    Mission analysis data for inclined geosynchronous orbits, part 1

    Get PDF
    Data needed for preliminary design of inclined geosynchronous missions are provided. The inertial and Earth fixed coordinate systems are described, as well as orbit parameters and elements. The complete family of geosynchronous orbits is discussed. It is shown that circular inclined geosynchronous orbits comprise only one set in this family. The major orbit perturbation and their separate effects on the geosynchronous orbit are discussed. Detailed information on the orbit perturbation of inclined circular geosynchronous orbits is given, with emphasis on time history data of certain orbital elements. Orbit maintenance delta velocity (V) requirements to counteract the major orbit perturbations are determined in order to provide order of magnitude estimates and to show the effects of orbit inclination on delta V. Some of the considerations in mission design for a multisatellite system, such as a halo orbit constellation, are discussed

    Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene

    Full text link
    We present Raman spectroscopy measurements on single- and few-layer graphene flakes. Using a scanning confocal approach we collect spectral data with spatial resolution, which allows us to directly compare Raman images with scanning force micrographs. Single-layer graphene can be distinguished from double- and few-layer by the width of the D' line: the single peak for single-layer graphene splits into different peaks for the double-layer. These findings are explained using the double-resonant Raman model based on ab-initio calculations of the electronic structure and of the phonon dispersion. We investigate the D line intensity and find no defects within the flake. A finite D line response originating from the edges can be attributed either to defects or to the breakdown of translational symmetry
    • …
    corecore