1,329 research outputs found

    Forest-fire models and their critical limits

    Get PDF
    Forest-fire processes were first introduced in the physics literature as a toy model for self-organized criticality. The term self-organized criticality describes interacting particle systems which are governed by local interactions and are inherently driven towards a perpetual critical state. As in equilibrium statistical physics, the critical state is characterized by long-range correlations, power laws, fractal structures and self-similarity. We study several different forest-fire models, whose common features are the following: All models are continuous-time processes on the vertices of some graph. Every vertex can be "vacant" or "occupied by a tree". We start with some initial configuration. Then the process is governed by two competing random mechanisms: On the one hand, vertices become occupied according to rate 1 Poisson processes, independently of one another. On the other hand, occupied clusters are "set on fire" according to some predefined rule. In this case the entire cluster is instantaneously destroyed, i.e. all of its vertices become vacant. The self-organized critical behaviour of forest-fire models can only occur on infinite graphs such as planar lattices or infinite trees. However, in all relevant versions of forest-fire models, the destruction mechanism is a priori only well-defined for finite graphs. For this reason, one starts with a forest-fire model on finite subsets of an infinite graph and then takes the limit along increasing sequences of finite subsets to obtain a new forest-fire model on the infinite graph. In this thesis, we perform this kind of limit for two classes of forest-fire models and investigate the resulting limit processes

    Engineering for N. Y. World's Fair

    Get PDF

    Charles Franklin Kettering

    Get PDF

    A History of the Slide Rule

    Get PDF

    Engineering at N. Y. World's Fair

    Get PDF

    Red Cedars: Bane or Blessing?

    Get PDF
    Red Cedars are cursed by some and blessed by others. The authors of this article look at both sides and suggest ways of taming Red Cedars if you find them a pest

    GREAT/SOFIA atmospheric calibration

    Full text link
    The GREAT observations need frequency-selective calibration across the passband for the residual atmospheric opacity at flight altitude. At these altitudes the atmospheric opacity has both narrow and broad spectral features. To determine the atmospheric transmission at high spectral resolution, GREAT compares the observed atmospheric emission with atmospheric model predictions, and therefore depends on the validity of the atmospheric models. We discusse the problems identified in this comparison with respect to the observed data and the models, and describe the strategy used to calibrate the science data from GREAT/SOFIA during the first observing periods.Comment: 14 pages, 4 figure

    Electrochemical Solutions for Advanced Life Support

    Get PDF
    The Oxygen Generating Assembly (OGA) on-board the International Space Station (ISS) employs a polymer electrolyte membrane (PEM) water electrolysis cell stack to electrochemically dissociate water into its two components oxygen and hydrogen. Oxygen is provided to the cabin atmosphere for crew respiration while the hydrogen is delivered to a carbon dioxide reduction system to recover oxygen as water. The design of the OGA evolved over a number of years to arrive at the system solution that is currently operational on ISS. Future manned missions to space will require advanced technologies that eliminate the need for resupply from earth and feature in-situ resource utilization to sustain crew life and to provide useful materials to the crew. The architects planning such missions should consider all potential solutions at their disposal to arrive at an optimal vehicle solution that minimizes crew maintenance time, launch weight, installed volume and energy consumption demands. Skyre is developing new technologies through funding from NASA, the Department of Energy, and internal investment based on PEM technology that could become an integral part of these new vehicle solutions. At varying stages of Technology Readiness Level (TRL) are: an oxygen concentrator and compressor that can separate oxygen from an air stream and provide an enriched oxygen resource for crew medical use and space suit recharge without any moving parts in the pure oxygen stream; a regenerative carbon dioxide removal system featuring a PEM-based sorbent regenerator; a carbon dioxide reduction system that electrochemically produces organic compounds that could serve as fuels or as a useful intermediary to more beneficial compounds; and an electrochemical hydrogen separator and compressor for hydrogen recycle. The technical maturity of these projects is presented along with pertinent performance test data that could be beneficial in future study efforts
    corecore