176 research outputs found

    A review of anomalous resonance, its associated cloaking, and superlensing

    Get PDF
    We review a selected history of anomalous resonance, cloaking due to anomalous resonance, cloaking due to complementary media, and superlensing.Comment: 15 pages and 1 figur

    Anisotropic focusing characteristics of micro-domain structures within crystalline Sr<sub>0.61</sub>Ba<sub>0.39</sub>Nb<sub>2</sub>O<sub>6</sub> : the crystal ball

    No full text
    We report the anisotropic focusing characteristics of a spherically configured region of micro-domains that have been induced within a cubic shaped crystal of Ce:doped Sr0.61Ba0.39Nb2O6. The internal spherical structure focuses extraordinary polarised light, but not ordinary polarised. The spherical region, which is easily observed via scattering, is formed as the crystal cools down, after a repoling cycle through the Curie temperature, with an applied field. Analytic modelling of the thermal gradients that exist within the crystal during cooling reveals a small (&lt; 1°) temperature difference between the central and outside regions. The similarity in shape between these temperature profiles and the observed scattering region suggests a possible mechanism for the growth of this spherical micro-domained structure

    Temperature sensitivity of repoling in strontium barium niobate near to the glassy transition

    No full text
    We report the observation of an enhanced temperature sensitivity for transient repoling near to the domain freezing temperature in ferroelectric strontium barium niobate. This work has important consequences for the use of optical fields to control domain patterns in such materials. We model the repoling characteristics of the material using a Vogel-Fulcher type response and present results showing the degree of repoling as a function of field and temperature, for short duration repoling times

    Phase conjugate fluorozirconate fibre laser operating at 800nm

    No full text
    We report phase-conjugate feedback into a fluorozirconate optical fiber amplifier at infrared wavelengths. By using a semiconductor laser diode at 807 nm, a grating is established in photorefractive BaTiO3 that, in the ring configuration, provides feedback into the amplifier necessary for laser action. Once written, the grating is self-sustaining, and lasing is observed even after the laser diode is removed

    Selective radiolabelling with 68Ga under mild conditions: a route towards a porphyrin PET/PDT theranostic agent

    Get PDF
    A theranostic conjugate for use as a positron emission tomography (PET) radiotracer and as a photosensitiser for photodynamic therapy (PDT) has been synthesised. A water-soluble porphyrin was coupled with the bifunctional chelate, H4Dpaa.ga. This conjugate is capable of rapid68Ga complexation under physiological conditions; with 93% and 80% radiochemical yields achieved, at pH 4.5 and pH 7.4 respectively, in 15 min at 25 °C. Photocytotoxicity was evaluated on HT-29 cells and showed the conjugate was capable of >50% cell death at 50 ΌM upon irradiation with light, while causing minimal toxicity in the absence of light (>95% cell survival)

    Opaque perfect lenses

    Get PDF
    The response of the ``perfect lens'', consisting of a slab of lossless material of thickness dd with Ï”=ÎŒ=−1\epsilon=\mu=-1 at one frequency ω0\omega_0 is investigated. It is shown that as time progresses the lens becomes increasingly opaque to any physical TM line dipole source located a distance d0<d/2d_0<d/2 from the lens and which has been turned on at time t=0t=0. Here a physical source is defined as one which supplies a bounded amount of energy per unit time. In fact the lens cloaks the source so that it is not visible from behind the lens either. For sources which are turned on exponentially slowly there is an exact correspondence between the response of the perfect lens in the long time constant limit and the response of lossy lenses in the low loss limit. Contrary to the usual picture where the field intensity has a minimum at the front interface we find that the field diverges to infinity there in the long time constant limit.Comment: The 7th International Conference on the Electrical transport and Optical Properties of Inhomogenous Media (ETOPIM7

    Solutions in folded geometries and associated cloaking due to anomalous resonance

    Get PDF
    Solutions for the fields in a coated cylinder where the core radius is bigger than the shell radius are seemingly unphysical, but can be given a physical meaning if one transforms to an equivalent problem by unfolding the geometry. In particular, the unfolded material can act as an impedance matched hyperlens, and as the loss in the lens goes to zero finite collections of polarizable line dipoles lying within a critical region surrounding the hyperlens are shown to be cloaked having vanishingly small dipole moments. This cloaking, which occurs both in the folded geometry and the equivalent unfolded one, is due to anomalous resonance, where the collection of dipoles generates an anomalously resonant field, which acts back on the dipoles to essentially cancel the external fields acting on them

    Synthesis of a porphyrin with histidine-like chelate: an efficient path towards molecular PDT/SPECT theranostics

    Get PDF
    © The Royal Society of Chemistry 2020. The goal of “personalised” medicine has seen a growing interest in the development of theranostic agents. Bifunctional, and targeted-trifunctional, theranostic water-soluble porphyrins with a histidine-like chelating group have been synthesisedviacopper-catalysed azide-alkyne cycloaddition (CuAAC) “click” chemistry in high yield and purity. They are capable of photodynamic treatment and [99mTc(CO)3]+complexation for single-photon emission computed tomography (SPECT) imaging, with a radiochemical yield of >95%. The toxicity and phototoxicity were evaluated on HT-29 cells, DU145, and DU145-PSMA cell lines, with the targeted theranostic showing more potent phototoxicity towards DU145-PSMA expressing cells

    Fast electron transport patterns in intense laser-irradiated solids diagnosed by modeling measured multi-MeV proton beams

    Get PDF
    The measured spatial-intensity distribution of the beam of protons accelerated from the rear side of a solid target irradiated by an intense (>10 Wcm) laser pulse provides a diagnostic of the two-dimensional fast electron density profile at the target rear surface and thus the fast electron beam transport pattern within the target. An analytical model is developed, accounting for rear-surface fast electron sheath dynamics, ionization and projection of the resulting beam of protons. The sensitivity of the spatial-intensity distribution of the proton beam to the fast electron density distribution is investigated. An annular fast electron beam transport pattern with filamentary structure is inferred for the case of a thick diamond target irradiated at a peak laser intensity of 6 × 10 Wcm
    • 

    corecore