457 research outputs found

    Resolving the Gap and AU-scale Asymmetries in the Pre-transitional Disk of V1247 Orionis

    Get PDF
    archiveprefix: arXiv primaryclass: astro-ph.SR keywords: accretion, accretion disks, protoplanetary disks, stars: pre-main sequence, techniques: interferometric eid: 80 adsurl: http://adsabs.harvard.edu/abs/2013ApJ...768...80K adsnote: Provided by the SAO/NASA Astrophysics Data SystemarticlePre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us to spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5-13 μm), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically thick inner-disk component (located at 0.18 AU from the star) that is separated from the optically thick outer disk (radii gsim 46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K', and L' bands, we detect asymmetries in the brightness distribution on scales of ~15-40 AU, i.e., within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.This work was done in part under contract with the California Institute of Technology (Caltech), funded by NASA through the Sagan Fellowship Program (S.K. and C.E. are Sagan Fellows). Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This work was supported in part by the Aerospace Corporation's Independent Research and Development (IR&D) program. This work was supported by NASA ADP grant NNX09AC73G

    The pre-main sequence binary HK Ori : Spectro-astrometry and EXPORT data

    Full text link
    In this paper we present multi-epoch observations of the pre-main sequence binary HK Ori. These data have been drawn from the EXPORT database and are complemented by high quality spectro-astrometric data of the system. The spectroscopic data appear to be very well represented by a combination of an A dwarf star spectrum superposed on a (sub-)giant G-type spectrum. The radial velocity of the system is consistent with previous determinations, and does not reveal binary motion, as expected for a wide binary. The spectral, photometric and polarimetric properties and variability of the system indicate that the active object in the system is a T Tauri star with UX Ori characteristics. The spectro-astrometry of HK Ori is sensitive down to milli-arcsecond scales and confirms the speckle interferometric results from Leinert et al. The spectro-astrometry allows with fair certainty the identification of the active star within the binary, which we suggest to be a G-type T Tauri star based on its spectral characteristics.Comment: MNRAS in press 8 pages 7 figure

    Confronting Standard Models of Proto–Planetary Disks With New Mid–Infrared Sizes from the Keck Interferometer

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.The accepted author manuscript is in ORE at http://hdl.handle.net/10871/21611We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used "star + inner dust rim + flared disk" class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at "transition disk"-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.M.S. was supported by NASA ADAP grant NNX09AC73G. R.W.R. was supported by the IR&D program of The Aerospace Corporation

    Recent trends in hormone therapy utilization and breast cancer incidence rates in the high incidence population of Marin County, California

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent declines in invasive breast cancer have been reported in the US, with many studies linking these declines to reductions in the use of combination estrogen/progestin hormone therapy (EPHT). We evaluated the changing use of postmenopausal hormone therapy, mammography screening rates, and the decline in breast cancer incidence specifically for Marin County, California, a population with historically elevated breast cancer incidence rates.</p> <p>Methods</p> <p>The Marin Women's Study (MWS) is a community-based, prospective cohort study launched in 2006 to monitor changes in breast cancer, breast density, and personal and biologic risk factors among women living in Marin County. The MWS enrolled 1,833 women following routine screening mammography between October 2006 and July 2007. Participants completed a self-administered questionnaire that included items regarding historical hormone therapy regimen (estrogen only, progesterone only, EPHT), age of first and last use, total years of use, and reason(s) for stopping, as well as information regarding complementary hormone use. Questionnaire items were analyzed for 1,083 non-Hispanic white participants ages 50 and over. Breast cancer incidence rates were assessed overall and by tumor histology and estrogen receptor (ER) status for the years 1990-2007 using data from the Northern California Surveillance, Epidemiology and End Results (SEER) cancer registry.</p> <p>Results</p> <p>Prevalence of EPHT use among non-Hispanic white women ages 50 and over declined sharply from 21.2% in 1998 to 6.7% by 2006-07. Estrogen only use declined from 26.9% in 1998 to 22.4% by 2006-07. Invasive breast cancer incidence rates declined 33.4% between 2001 and 2004, with drops most pronounced for ER+ cancers. These rate reductions corresponded to declines of about 50 cases per year, consistent with population attributable fraction estimates for EPHT-related breast cancer. Self-reported screening mammography rates did not change during this period. Use of alternative or complementary agents did not differ significantly between ever and never hormone users. Of women who reported stopping EPHT in the past 5 years, 60% cited "health risks" or "news reports" as their primary reasons for quitting.</p> <p>Conclusion</p> <p>A dramatic reduction in EPHT use was followed temporally by a significant reduction in invasive and ER+ breast cancer rates among women living in Marin County, California.</p

    The shadow knows: using shadows to investigate the structure of the pretransitional disk of HD 100453

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.We present GPI polarized intensity imagery of HD 100453 in Y-, J-, and K1 bands which reveals an inner gap (9−189 - 18 au), an outer disk (18−3918-39 au) with two prominent spiral arms, and two azimuthally-localized dark features also present in SPHERE total intensity images (Wagner 2015). SED fitting further suggests the radial gap extends to 11 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by a inner disk which is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D (Whitney 2013), we construct a model of the disk which allows us to determine its physical properties in more detail. From the angular separation of the features we measure the difference in inclination between the disks 45∘^{\circ}, and their major axes, PA = 140∘^{\circ} east of north for the outer disk and 100∘^{\circ}for the inner disk. We find an outer disk inclination of 25±10∘25 \pm 10^{\circ} from face-on in broad agreement with the Wagner 2015 measurement of 34∘^{\circ}. SPHERE data in J- and H-bands indicate a reddish disk which points to HD 100453 evolving into a young debris disk.Based in part on data obtained at the Gemini Observatory via the time exchange program between Gemini and the Subaru Telescope (GS-2015A-C-1). The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil). M.T. is partly supported by JSPS KAKENHI 2680016. C.A.G. is supported under NASA Origins of Solar Systems Funding via NNG16PX39P. Y.H. is supported by Jet Propulsion Laboratory, California Institute of Technology under a contract from NASA. M.S. is supported by NASA Exoplanet Research Program NNX16AJ75G. J.K. acknowledges support from Philip Leverhulme Prize (PLP-2013-110, PI: Stefan Kraus). S.K. acknowledges support from an ERC Starting Grant (Grant Agreement No. 639889). We also thank the referee for their comments and suggestions which added clarity to this paper

    Variability of disk emission in pre-main sequence and related stars. II. Variability in the gas and dust emission of the Herbig Fe star SAO 206462

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.We present 13 epochs of near-infrared (0.8-5 μm) spectroscopic observations of the pre-transitional, "gapped" disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (Brα, Brγ, Paβ, Paγ, Paδ, Paepsilon, and the 0.8446 μm line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 × 10–8 M ☉ yr–1 was derived from the Brγ and Paβ lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only ~30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 μm was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on timescales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magnetorotational) would operate there on longer timescales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on timescales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer timescales that have been sampled so far.This work was supported by NASA ADP grants NNH06CC28C and NNX09AC73G, Hubble Space Telescope grants HST-GO-10764 and HST-GO-10864, Chilean National TAC grants CNTAC-010A-064

    Decline in breast cancer incidence due to removal of promoter: combination estrogen plus progestin

    Get PDF
    Combination estrogen plus progestin causes breast cancer. In light of this causal relation, the rapid decline in breast cancer incidence noted in 2003, following an earlier and slower reduction in incidence from 1999, raises important issues regarding the proportion of this decline that may be due to a reduction in the use of combination therapy by postmenopausal women. The context of these national trends is reviewed and the strong link to the use of hormone therapy is discussed, after noting that screening cannot explain any substantial component of these trends. The rapid decrease in incidence, most evident among women aged 50 to 69 years and in estrogen receptor positive tumors, that parallels the decline in combination hormone use is consistent with a promoter effect for estrogen plus progestins

    A Triple Protostar System Formed via Fragmentation of a Gravitationally Unstable Disk

    Get PDF
    Binary and multiple star systems are a frequent outcome of the star formation process, and as a result, almost half of all sun-like stars have at least one companion star. Theoretical studies indicate that there are two main pathways that can operate concurrently to form binary/multiple star systems: large scale fragmentation of turbulent gas cores and filaments or smaller scale fragmentation of a massive protostellar disk due to gravitational instability. Observational evidence for turbulent fragmentation on scales of >>1000~AU has recently emerged. Previous evidence for disk fragmentation was limited to inferences based on the separations of more-evolved pre-main sequence and protostellar multiple systems. The triple protostar system L1448 IRS3B is an ideal candidate to search for evidence of disk fragmentation. L1448 IRS3B is in an early phase of the star formation process, likely less than 150,000 years in age, and all protostars in the system are separated by <<200~AU. Here we report observations of dust and molecular gas emission that reveal a disk with spiral structure surrounding the three protostars. Two protostars near the center of the disk are separated by 61 AU, and a tertiary protostar is coincident with a spiral arm in the outer disk at a 183 AU separation. The inferred mass of the central pair of protostellar objects is ∼\sim1 Msun_{sun}, while the disk surrounding the three protostars has a total mass of ∼\sim0.30 M_{\sun}. The tertiary protostar itself has a minimum mass of ∼\sim0.085 Msun_{sun}. We demonstrate that the disk around L1448 IRS3B appears susceptible to disk fragmentation at radii between 150~AU and 320~AU, overlapping with the location of the tertiary protostar. This is consistent with models for a protostellar disk that has recently undergone gravitational instability, spawning one or two companion stars.Comment: Published in Nature on Oct. 27th. 24 pages, 8 figure

    Differences in the gas and dust distribution in the transitional disk of a sun-like young star, PDS 70

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordThe American Astronomical Society. All rights reserved. We present ALMA 0.87 mm continuum, HCO + J = 4-3 emission line, and CO J = 3-2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two-component transitional disk system with a radial dust gap of 0.″42 ±0.″05, an azimuthal gap in the HCO + J = 4-3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analog in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D using a two-disk component. We find that there is a radial gap that extends from 15 to 60 au in all grain sizes, which differs from previous work.This work is supported supported by the NASA XRP grants NNX17AF88G and NNX16AJ75G. MC thanks the support from the Centro de Astrofísica de Valparaíso. S.K. acknowledges support from an STFC Rutherford Fellowship (ST/J004030/1) and ERC Starting Grant (Grant Agreement No. 639889). This work is supported by the Astrobiology Center Program of National Institutes of Natural Sciences (NINS) (Grant Number: AB281013) and by MEXT KAKENHI No. 17K05399 (EA). Y.H. is currently supported by Jet Propulsion Laboratory, California Institute of Technology, under a contract from NASA. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.00888.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, In
    • …
    corecore