3,859 research outputs found

    “Blank Stock” Techniques in North Carolina

    Get PDF

    A Hybrid Radial Basis Function - Pseudospectral Method for Thermal Convection in a 3-D Spherical Shell

    Get PDF
    A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral (PS) methods in a “2+1” approach is presented for numerically simulating thermal convection in a 3-D spherical shell. This is the first study to apply RBFs to a full 3D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface based coordinate system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they completely circumvent the pole issue with the further advantage that nodes can be “scattered” over the surface of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this new hybrid methodology are given to the problem of convection in the Earth’s mantle,which is modeled by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further investigation, the study limits itself to an isoviscous mantle.Benchmark comparisons are presented with other currently used mantle convection codes for Rayleigh number 7 · 103 and 105. The algorithmic simplicity of the code (mostly due to RBFs)allows it to be written in less than 400 lines of Matlab and run on a single workstation. We find that our method is very competitive with those currently used in the literature

    A Fast and Accurate Algorithm for Spherical Harmonic Analysis on HEALPix Grids with Applications to the Cosmic Microwave Background Radiation

    Get PDF
    The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme is used extensively in astrophysics for data collection and analysis on the sphere. The scheme was originally designed for studying the Cosmic Microwave Background (CMB) radiation, which represents the first light to travel during the early stages of the universe's development and gives the strongest evidence for the Big Bang theory to date. Refined analysis of the CMB angular power spectrum can lead to revolutionary developments in understanding the nature of dark matter and dark energy. In this paper, we present a new method for performing spherical harmonic analysis for HEALPix data, which is a central component to computing and analyzing the angular power spectrum of the massive CMB data sets. The method uses a novel combination of a non-uniform fast Fourier transform, the double Fourier sphere method, and Slevinsky's fast spherical harmonic transform (Slevinsky, 2019). For a HEALPix grid with NN pixels (points), the computational complexity of the method is O(Nlog2N)\mathcal{O}(N\log^2 N), with an initial set-up cost of O(N3/2logN)\mathcal{O}(N^{3/2}\log N). This compares favorably with O(N3/2)\mathcal{O}(N^{3/2}) runtime complexity of the current methods available in the HEALPix software when multiple maps need to be analyzed at the same time. Using numerical experiments, we demonstrate that the new method also appears to provide better accuracy over the entire angular power spectrum of synthetic data when compared to the current methods, with a convergence rate at least two times higher

    A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces

    Get PDF
    In this paper we present a high-order kernel method for numerically solving diffusion and reaction-diffusion partial differential equations (PDEs) on smooth, closed surfaces embedded in Rd\mathbb{R}^d. For two-dimensional surfaces embedded in R3\mathbb{R}^3, these types of problems have received growing interest in biology, chemistry, and computer graphics to model such things as diffusion of chemicals on biological cells or membranes, pattern formations in biology, nonlinear chemical oscillators in excitable media, and texture mappings. Our kernel method is based on radial basis functions (RBFs) and uses a semi-discrete approach (or the method-of-lines) in which the surface derivative operators that appear in the PDEs are approximated using collocation. The method only requires nodes at "scattered" locations on the surface and the corresponding normal vectors to the surface. Additionally, it does not rely on any surface-based metrics and avoids any intrinsic coordinate systems, and thus does not suffer from any coordinate distortions or singularities. We provide error estimates for the kernel-based approximate surface derivative operators and numerically study the accuracy and stability of the method. Applications to different non-linear systems of PDEs that arise in biology and chemistry are also presented

    Computing with functions in spherical and polar geometries I. The sphere

    Get PDF
    A collection of algorithms is described for numerically computing with smooth functions defined on the unit sphere. Functions are approximated to essentially machine precision by using a structure-preserving iterative variant of Gaussian elimination together with the double Fourier sphere method. We show that this procedure allows for stable differentiation, reduces the oversampling of functions near the poles, and converges for certain analytic functions. Operations such as function evaluation, differentiation, and integration are particularly efficient and can be computed by essentially one-dimensional algorithms. A highlight is an optimal complexity direct solver for Poisson's equation on the sphere using a spectral method. Without parallelization, we solve Poisson's equation with 100100 million degrees of freedom in one minute on a standard laptop. Numerical results are presented throughout. In a companion paper (part II) we extend the ideas presented here to computing with functions on the disk.Comment: 23 page

    A High-Order Radial Basis Function (RBF) Leray Projection Method for the Solution of the Incompressible Unsteady Stokes Equations

    Get PDF
    A new projection method based on radial basis functions (RBFs) is presented for discretizing the incompressible unsteady Stokes equations in irregular geometries. The novelty of the method comes from the application of a new technique for computing the Leray-Helmholtz projection of a vector field using generalized interpolation with divergence-free and curl-free RBFs. Unlike traditional projection methods, this new method enables matching both tangential and normal components of divergence-free vector fields on the domain boundary. This allows incompressibility of the velocity field to be enforced without any time-splitting or pressure boundary conditions. Spatial derivatives are approximated using collocation with global RBFs so that the method only requires samples of the field at (possibly scattered) nodes over the domain. Numerical results are presented demonstrating high-order convergence in both space (between 5th and 6th order) and time (up to 4th order) for some model problems in two dimensional irregular geometries.Comment: 34 pages, 8 figure

    A Phylogenetic Analysis of the African Plant Genus Palisota (family Commelinaceae) based on Chloroplast DNA Sequences

    Get PDF
    The plant genus Palisota (family Commelinaceae, or spiderwort family) consists of approximately 20 species and is distributed throughout the forests of tropical Africa. The genus exhibits several unusual morphological characteristics, and as a result has been difficult to classify based on morphology. Molecular phylogenetic studies have placed it near the base of Commelinaceae, but the exact placement of Palisota within the family is not clear. As the African continent has become more arid in recent geological times, the forests have receded, reducing the habitat for Palisota species and potentially impacting speciation and extinction rates within the genus. The goal of this study is to sequence the chloroplast-encoded gene rbcL in several additional species of Palisota and its relatives in order to: 1) determine the phylogenetic relationship of the genus with respect to other members of Commelinaceae; 2) evaluate phylogenentic relationships among species of Palisota; and 3) infer relative speciation/extinction rates within the genus. Additionally, we are exploring the use of other molecular regions for phylogenetic analysis with the genus
    corecore