1,643 research outputs found

    Whole-genome association analysis of treatment response in obsessive-compulsive disorder.

    Get PDF
    Up to 30% of patients with obsessive-compulsive disorder (OCD) exhibit an inadequate response to serotonin reuptake inhibitors (SRIs). To date, genetic predictors of OCD treatment response have not been systematically investigated using genome-wide association study (GWAS). To identify specific genetic variations potentially influencing SRI response, we conducted a GWAS study in 804 OCD patients with information on SRI response. SRI response was classified as 'response' (n=514) or 'non-response' (n=290), based on self-report. We used the more powerful Quasi-Likelihood Score Test (the MQLS test) to conduct a genome-wide association test correcting for relatedness, and then used an adjusted logistic model to evaluate the effect size of the variants in probands. The top single-nucleotide polymorphism (SNP) was rs17162912 (P=1.76 × 10(-8)), which is near the DISP1 gene on 1q41-q42, a microdeletion region implicated in neurological development. The other six SNPs showing suggestive evidence of association (P<10(-5)) were rs9303380, rs12437601, rs16988159, rs7676822, rs1911877 and rs723815. Among them, two SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, located near the PCDH10 gene, gave P-values of 2.86 × 10(-6) and 8.41 × 10(-6), respectively. The other 35 variations with signals of potential significance (P<10(-4)) involve multiple genes expressed in the brain, including GRIN2B, PCDH10 and GPC6. Our enrichment analysis indicated suggestive roles of genes in the glutamatergic neurotransmission system (false discovery rate (FDR)=0.0097) and the serotonergic system (FDR=0.0213). Although the results presented may provide new insights into genetic mechanisms underlying treatment response in OCD, studies with larger sample sizes and detailed information on drug dosage and treatment duration are needed

    Tourette disorder spectrum maps to chromosome 14q31.1 in an Italian kindred

    Get PDF
    Tourette syndrome (TS) is a frequent neuropsychiatric disorder of unknown etiology. A number of chromosomal regions have been nominated as TS loci in linkage studies, but confirmation has met with limited success and causative mutations have not yet been definitely identified. Furthermore, TS, chronic tics, and obsessive–compulsive disorder (OCD) occur at increased frequencies among TS relatives, supporting the view that these phenotypes represent parts of the same genetically determined spectrum. We ascertained a four-generation Italian kindred segregating TS, chronic multiple motor tics (CMT), and OCD, and we performed a ten-centimorgan (cM) genome-wide linkage scan in order to map the underlying genetic defect. Suggestive linkage to chromosome 14q31.1 (multipoint LOD = 2.4) was detected by affected-only analysis under an autosomal dominant model and a narrower phenotype definition (only the subjects with TS and CMT were considered as affected). The linkage peak increased and it approached genome-wide significance (LOD = 3.29) when a broader phenotype definition was adopted (subjects with TS, CMT, and OCD considered as affected). Haplotype analysis defined a ∼2.3 cM critical region, shared by all the relatives with TS, CMT, or OCD. In conclusion, we provide strong evidence for linkage of TS spectrum to chromosome 14q31.1. Suggestive linkage to an overlapping region of chromosome 14q was reported in a recent scan of TS sibling pairs. This region might therefore contain an important gene for TS, and it should be prioritized for further study

    Combined linkage and linkage disequilibrium analysis of a motor speech phenotype within families ascertained for autism risk loci

    Get PDF
    Using behavioral and genetic information from the Autism Genetics Resource Exchange (AGRE) data set we developed phenotypes and investigated linkage and association for individuals with and without Autism Spectrum Disorders (ASD) who exhibit expressive language behaviors consistent with a motor speech disorder. Speech and language variables from Autism Diagnostic Interview-Revised (ADI-R) were used to develop a motor speech phenotype associated with non-verbal or unintelligible verbal behaviors (NVMSD:ALL) and a related phenotype restricted to individuals without significant comprehension difficulties (NVMSD:C). Using Affymetrix 5.0 data, the PPL framework was employed to assess the strength of evidence for or against trait-marker linkage and linkage disequilibrium (LD) across the genome. Ingenuity Pathway Analysis (IPA) was then utilized to identify potential genes for further investigation. We identified several linkage peaks based on two related language-speech phenotypes consistent with a potential motor speech disorder: chromosomes 1q24.2, 3q25.31, 4q22.3, 5p12, 5q33.1, 17p12, 17q11.2, and 17q22 for NVMSD:ALL and 4p15.2 and 21q22.2 for NVMSD:C. While no compelling evidence of association was obtained under those peaks, we identified several potential genes of interest using IPA. Conclusion: Several linkage peaks were identified based on two motor speech phenotypes. In the absence of evidence of association under these peaks, we suggest genes for further investigation based on their biological functions. Given that autism spectrum disorders are complex with a wide range of behaviors and a large number of underlying genes, these speech phenotypes may belong to a group of several that should be considered when developing narrow, well-defined, phenotypes in the attempt to reduce genetic heterogeneity

    ISSN exercise & sport nutrition review: research & recommendations

    Get PDF
    Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients
    corecore