27 research outputs found

    Light-harvesting antennae based on copper indium sulfide (CIS) quantum dots

    Get PDF
    Copper indium sulfide quantum dots (CIS QDs) and their core-shell analogues (CIS@ZnS QDs) were functionalized with pyrene chromophores via a dihydrolipoamide bifunctional binding moiety: UV excitation of the pyrene chromophores resulted in sensitized emission of the CIS core because of an efficient energy transfer process; the core-shell hybrid system exhibits a 50% increased brightness when excited at 345 nm

    Reduced graphene oxide-ZnO hybrid composites as photocatalysts: The role of nature of the molecular target in catalytic performance

    Get PDF
    Spurred by controversial literature findings, we enwrapped reduced graphene oxide (rGO) in ZnO hierarchical microstructures (rGO loadings spanning from 0.01 to 2 wt%) using an in situ synthetic procedure. The obtained hybrid composites were carefully characterized, aiming at shining light on the possible role of rGO on the claimed increased performance as photocatalysts. Several characterization tools were exploited to unveil the effect exerted by rGO, including steady state and time resolved photoluminescence, electron microscopies and electrochemical techniques, in order to evaluate the physical, optical and electrical features involved in determining the catalytic degradation of rhodamine B and phenol in water. Several properties of native ZnO structures were found changed upon the rGO enwrapping (including optical absorbance, concentration of native defects in the ZnO matrix and double-layer capacitance), which are all involved in determining the photocatalytic performance of the hybrid composites. The findings discussed in the present work highlight the high complexity of the field of application of graphene-derivatives as supporters of semiconducting metal oxides functionality, which has to be analyzed through a multi-parametric approach

    In Situ-Generated Oxide in Sn-Doped Nickel Phosphide Enables Ultrafast Oxygen Evolution

    Get PDF
    Water splitting is considered one of the most promising approaches to power the globe without the risk of environmental pollution. The oxygen evolution reaction (OER) is even more challenging because the generation of only one oxygen molecule involves the transfer of four e- and removal of four H+ ions from water. Thus, developing highly efficient catalysts to meet industrial requirements remains a focus of attention. Herein, the prominent role of Sn in accelerating the electron transfer kinetics of Ni5P4 nanosheets in OER is reported. The post catalytic survey elucidates that the electrochemically induced Ni-Sn oxides at the vicinity of phosphides are responsible for the observed catalytic activity, delivering current densities of 10, 30, and 100 mA cm-2 at overpotentials of only 173 ± 5.2, 200 ±7.4, and 310 ± 5.5 mV, respectively. The density functional theory calculation also supports the experimental findings from the basis of the difference observed in density of states at the Fermi level in the presence/absence of Sn. This work underscores the role of Sn in OER and opens a promising avenue toward practical implementation of hydrogen production through water splitting and other catalytic reactions

    Au-Decorated Ce-Ti Mixed Oxides for Efficient CO Preferential Photooxidation

    Get PDF
    We investigated the photocatalytic behavior of gold nanoparticles supported on CeO2-TiO2 nanostructured matrixes in the CO preferential oxidation in H2-rich stream (photo-CO-PROX), by modifying the electronic band structure of ceria through addition of titania and making it more suitable for interacting with free electrons excited in gold nanoparticles through surface plasmon resonance. CeO2 samples with different TiO2 concentrations (0-20 wt %) were prepared through a slow coprecipitation method in alkaline conditions. The synthetic route is surfactant-free and environmentally friendly. Au nanoparticles (<1.0 wt % loading) were deposited on the surface of the CeO2-TiO2 oxides by deposition-precipitation. A benchmarking sample was also considered, prepared by standard fast coprecipitation, to assess how a peculiar morphology can affect the photocatalytic behavior. The samples appeared organized in a hierarchical needle-like structure, with different morphologies depending on the Ti content and preparation method, with homogeneously distributed Au nanoparticles decorating the Ce-Ti mixed oxides. The morphology influences the preferential photooxidation of CO to CO2 in excess of H2 under simulated solar light irradiation at room temperature and atmospheric pressure. The Au/CeO2-TiO2 systems exhibit much higher activity compared to a benchmark sample with a non-organized structure. The most efficient sample exhibited CO conversions of 52.9 and 80.2%, and CO2 selectivities equal to 95.3 and 59.4%, in the dark and under simulated sunlight, respectively. A clear morphology-functionality correlation was found in our systematic analysis, with CO conversion maximized for a TiO2 content equal to 15 wt %. The outcomes of this study are significant advancements toward the development of an effective strategy for exploitation of hydrogen as a viable clean fuel in stationary, automotive, and portable power generators

    Interfacing CrOx and CuS for synergistically enhanced water oxidation catalysis

    Get PDF
    The sluggish kinetics associated with the oxygen evolution reaction (OER) limits the sustainability of fuel production and chemical synthesis. Developing catalysts based on Earth abundant elements with a reasonable strategy could solve the challenge. Here, we present a heterostructure built from CrOx and CuS whose interface gives rise to the advent of new functionalities in catalytic activity. Using X-ray photoelectron and absorption spectroscopies, we identified the multiple oxidation states and low coordination number of Cr metal in CrOx-CuS heterostructure. Benefitting from these features, CrOx-CuS generates oxygen gas through water splitting with a low over potential of 190 mV vs RHE at a current density of 10 mA cm− 2 . The catalyst shows no evident deactivation after a 36-hours operation in alkaline medium. The high catalytic activity, inspired by first principles calculations, and long-time durability make it one of the most effective OER electrocatalysts

    Nanocrystalline and Amorphous Calcium Carbonate from Waste Seashells by Ball Milling Mechanochemistry Processes

    Get PDF
    Nanocrystalline calcium carbonate (CaCO3) and amorphous CaCO3 (ACC) are materials of increasing technological interest. Nowadays, they are mainly synthetically produced by wet reactions using CaCO3 reagents in the presence of stabilizers. However, it has recently been discovered that ACC can be produced by ball milling calcite. Calcite and/or aragonite are the mineral phases of mollusk shells, which are formed from ACC precursors. Here, we investigated the possibility to convert, on a potentially industrial scale, the biogenic CaCO3 (bCC) from waste mollusk seashells into nanocrystalline CaCO3 and ACC. Waste seashells from the aquaculture species, namely oysters (Crassostrea gigas, low-Mg calcite), scallops (Pecten jacobaeus, medium-Mg calcite), and clams (Chamelea gallina, aragonite) were used. The ball milling process was carried out by using different dispersing solvents and potential ACC stabilizers. Structural, morphological, and spectroscopic characterization techniques were used. The results showed that the mechanochemical process produced a reduction of the crystalline domain sizes and formation of ACC domains, which coexisted in microsized aggregates. Interestingly, bCC behaved differently from the geogenic CaCO3 (gCC), and upon long milling times (24 h), the ACC reconverted into crystalline phases. The aging in diverse environments of mechanochemically treated bCC produced a mixture of calcite and aragonite in a species-specific mass ratio, while the ACC from gCC converted only into calcite. In conclusion, this research showed that bCC can produce nanocrystalline CaCO3 and ACC composites or mixtures having species-specific features. These materials can enlarge the already wide fields of applications of CaCO3, which span from medical to material science

    Increased Myositis and Possible Myocarditis in Melanoma Patients Treated with Immune Checkpoint Inhibitors in the COVID-19 Era

    Get PDF
    BACKGROUND: Immune checkpoint inhibitor (ICI)-mediated myocarditis results in significant morbidity and mortality. At our institution, we noted an increased incidence of ICI-mediated myocarditis cases, leading to further investigation in our database of advanced melanoma patients treated with ICI therapy. METHODS: A single-center, retrospective cohort analysis of patients with advanced melanoma identified cases of ICI-mediated myocarditis and myositis. RESULTS: 366 patients with advanced melanoma received a dose of ICI from September 2014 to October 2019. Of these patients, there were 0 cases of ICI-mediated myocarditis (0%, 95% CI 0%-1.0%) and 2 cases of ICI-mediated myositis (0.55%, 95% CI 0.07%-1.96%). From November 2019 to December 2021, an additional 246 patients with advanced melanoma were identified. Of these patients, 10 (4.1%, 95% CI 1.97%-7.35%) developed ICI-mediated myocarditis and 10 developed ICI-mediated myositis. CONCLUSION: Our study suggests an increase in prevalence of ICI-mediated muscle damage including myositis and myocarditis in the COVID-19 era. Differentiation of these patients and further risk stratification may allow for development of guidelines for nuanced management of this serious complication

    Hybrid Silicon Nanocrystals for Color-Neutral and Transparent Luminescent Solar Concentrators

    No full text
    One of the most detrimental loss mechanisms in Luminescent Solar Concentrators (LSCs) is reabsorption of emitted light from the luminophore. Silicon Nanocrystals (SiNCs) offer a solution due to the high apparent Stokes shift, but the poor absorption properties limit their performance as LSC luminophores. Coupling an organic dye to SiNCs represents a smart approach to obtain sensitization of SiNC luminescence by the organic dyes, thus, resulting in tunable and improved optical properties of LSCs. In particular, 9,10-diphenylanthracene was employed as a UV sensitizer for SiNCs in order to produce LSCs with an aesthetic appearance suitable to smart window application and optical efficiency as high as 4.25%. In addition, the role of the energy transfer process on LSC performance was elucidated by a thorough optical and photovoltaic characterization
    corecore