2 research outputs found

    Conductance anomaly near the Lifshitz transition in strained bilayer graphene

    Get PDF
    Strain qualitatively changes the low-energy band structure of bilayer graphene, leading to the appearance of a pair of low-energy Dirac cones near each corner of the Brillouin zone, and a Lifshitz transition, (a saddle point in the dispersion relation) at an energy proportional to the strain [M. Mucha-Kruczynski, I.L. Aleiner, and V.I. Fal'ko, Phys. Rev. B 84, 041404 (2011)]. Here, we show that in the vicinity of the Lifshitz transition the conductance of a ballistic n-p and n-p-n junction exhibits an anomaly: a non-monotonic temperature and chemical potential dependence, with the size depending on the crystallographic orientation of the principal axis of the strain tensor. This effect is characteristic for junctions between regions of different polarity (n-p and n-p-n junctions), while there is no anomaly in junctions between regions of the same polarity (n-n' and n-n'-n junctions).Comment: 10 pages, 4 figures; http://link.aps.org/doi/10.1103/PhysRevB.85.16542

    Transport signatures of pseudomagnetic Landau levels in strained graphene ribbons

    Get PDF
    In inhomogeneously strained graphene, low-energy electrons experience a valley-antisymmetric pseudomagnetic field which leads to the formation of localized states at the edge between the valence and conduction bands, understood in terms of peculiar n=0 pseudomagnetic Landau levels. Here we show that such states can manifest themselves as an isolated quadruplet of low-energy conductance resonances in a suspended stretched graphene ribbon, where clamping by the metallic contacts results in a strong inhomogeneity of strain near the ribbon ends
    corecore