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Conductance anomaly near the Lifshitz transition in strained bilayer graphene
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Strain qualitatively changes the low-energy band structure of bilayer graphene, leading to the appearance of
a pair of low-energy Dirac cones near each corner of the Brillouin zone, and a Lifshitz transition (a saddle
point in the dispersion relation) at an energy proportional to the strain [Mucha-Kruczynski, Aleiner, and Fal’ko,
Phys. Rev. B 84, 041404 (2011)]. Here, we show that in the vicinity of the Lifshitz transition, the conductance
of a ballistic n-p and n-p-n junction exhibits an anomaly: a nonmonotonic temperature and chemical potential
dependence, with the size depending on the crystallographic orientation of the principal axis of the strain tensor.
This effect is characteristic for junctions between regions of different polarity (n-p and n-p-n junctions), while
there is no anomaly in junctions between regions of the same polarity (n-n′ and n-n′-n junctions).
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I. INTRODUCTION

Bilayer graphene (BLG),1,2 a crystal consisting of two
graphene monolayers arranged according to Bernal stacking,3

is a material with versatile properties. In contrast to monolayer
graphene, where the linear dispersion (Dirac cones) near
each corner of the Brillouin zone (K and K′ points) is
very difficult to alter, the low-energy band structure of BLG
can be qualitatively modified by relatively weak external
perturbations. For example, a transverse electric field opens
a mini-gap in the BLG spectrum.1,4–6 Also, it has been shown
that a relatively small uniaxial strain (of only a few percent)
leads to a change in the topology of the low-energy dispersion,
which then exhibits two Dirac mini-cones near each corner of
the Brillouin zone (see Fig. 1).7–10 Both in the conduction and
valence bands, these cones are connected by a saddle point
at which the Fermi lines reconnect, a configuration which is
known as a Lifshitz transition (LiTr).11,12 (In contrast, in a
monolayer, homogeneous strain only results in a small shift of
the Dirac cones away from the corners of the Brillouin zone,
without any qualitative change of the linear dispersion or the
chiral properties of the electrons.13)

In this paper, we study transport characteristics of an
ideally clean homogeneously strained BLG crystal, aiming
to find features in the temperature and chemical potential
dependence of its two-terminal conductance that would reflect
the presence of the saddle point in the dispersion relation. We
consider a short and infinitely wide strained BLG strip (the
only geometry where strain in a two-terminal device would
be homogeneous14), adjacent to BLG regions suspended over
metallic contacts. The information encoded in the two-terminal
conductance of such a device of finite length is complementary
to what is manifested by the sheet conductivity of an infinite
flake discussed in Ref. 15. Since contacts with metals heavily
dope graphene, we model the BLG terminals with a high (e.g.,
n type) density of carriers, whereas the strip in the middle
is considered to be at a low density of carriers (either of n

or p type, which can be controlled by an external gate). We
choose the amount of strain in the structure such that it induces
a LiTr at the energy of about ±5 meV, measured from the
charge neutrality point. According to Ref. 8, such an effect on
the bands can be generated by about ∼1% of uniaxial strain.

Note that in suspended graphene structures,16–18 strain of such
size may be inflicted involuntarily, either by processing and
annealing of the flake, or by displacements of contacts due to
the different contractions upon cooling of the substrate and the
supporting metallic electrodes.

Our findings show that the dependence of the conductance
G(μ,T ) on the chemical potential and temperature does
indeed reflect the spectral reconstruction by strain, in the
form of a conductance anomaly: a nonmonotonic dependence
of G(μ,T ) on both parameters μ and T . This behavior is
characteristic for the regime where the chemical potential is
close to the saddle point in the electron/hole spectrum on
one of the sides of an n-p junction, or in the middle of an
n-p-n device. The conductance anomaly is sensitive to the
crystallographic orientation of the sample geometry, which
determines the principal axis of the strain tensor. These results
are described in detail in Secs. III and IV, with their graphic
representation shown in Figs. 3 and 4. The calculations are
based on the Landauer-Büttiker approach,19 with transmission
probabilities obtained using the transfer matrix method.20–22

Section II introduces the model for a strained bilayer graphene
device and identifies the propagating and evanescent modes
required for these calculations.

II. ELECTRON DISPERSION AND PROPAGATING MODES
IN STRAINED BLG

In this section, we identify the energy dispersion and
transport modes in homogeneously strained BLG regions.
These results are used in the subsequent sections to study
the transport in devices made out of several such regions (n-p
and n-n′ junctions in Sec. III, n-p-n and n-n′-n junctions in
Sec. IV).

The lattice structure and parametrization of the minimal
relevant tight-binding model for electrons in strained BLG
(Refs. 1 and 8) are illustrated in the left panel of Fig. 1. The
stacked layers have every A site within each layer surrounded
by three B sites and vice versa, with intralayer coupling γ0 ∼ 3
eV; A2 sites are on top of B1 sites, with interlayer coupling
γ1 ∼ 0.4 eV, while A1/B2 sites sit over/under the hexagons
in the other layer and are coupled by “skew” hopping energy
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FIG. 1. (Color online) Left: Top view of an unperturbed (top
panel) and a strained (bottom panel) bilayer graphene (BLG) crystal.
The top and bottom layers are shown in yellow and red, respectively.
Strain modifies the intralayer nearest-neighbors coupling γ0, as well
as the interlayer coupling γ3 between atoms at the center of the other
layer’s hexagons. Right: Electronic band structure in the vicinity of
the Brillouin zone corners K and K′, with focus on the low-energy
dispersion near the K point for unperturbed and strained BLG.

γ3 ∼ 0.3 eV. The low-energy electronic states reside on the
sites A1 and B2, while the sites A2 and B1 support states in
split bands which do not contribute to low-energy transport.
For unstrained BLG, the low-energy states near each corner of
the Brillouin zone form two approximately parabolic bands, a
valence band and a conductance band, which touch each other
at the K or K′ point, as shown in the top right panel of Fig. 1.

Uniaxial strain changes the intralayer and interlayer hop-
ping integrals γ0 and γ3 by making them direction dependent,
as shown in the bottom left panel of Fig. 1. Neglecting trigonal
warping for large enough strain, the corresponding low-energy
dispersion near a given corner of the Brillouin zone is described
by the effective Hamiltonian8–10

H =
(

V (x) − 1
2m

(π †)2 + we−2iφ

− 1
2m

(π )2 + we2iφ V (x)

)
. (1)

Here, m ≈ 0.035me is the effective mass, π = px + ipy

parametrizes the in-plane momentum relative to the K or K′
point, and we−2iφ accounts for the change of the couplings
due to the strain, where φ is the angle between the principal
axis of the strain tensor and the crystallographic direction
of the crystal. Using the tight-binding model for BLG,
one finds8–10 that w = (3/4)(η3 − η0)γ3(δ − δ′), with η0,3 =
d ln γ0,3/d ln rAB , where rAB is the distance between carbon
sites, while δ and δ′ are the two principal values of the strain
tensor.

Near each corner of the Brillouin zone, the low-energy
dispersion relation obtained from Eq. (1) exhibits two Dirac
mini-cones, which are separated from the parabolic spectrum
at high energies (w � |ε| < γ1/2) by a saddle point at
ε = ±w (see bottom right panel of Fig. 1). For energies
|ε| < w between the saddle points, each mini-cone results
in a disconnected, approximately circular Fermi line. At the
saddle point, the lines connect pairwise in a LiTr, and beyond
the LiTr there is only a single Fermi line encircling the K or K′
point. Relative to these corner points, the strain-induced Dirac

FIG. 2. (Color online) Schematic representation of a suspended
BLG device with strain axis oriented along the x direction (as defined
in Fig. 1). The sketch illustrates the example of an n-p-n configuration
of such a device (μ < 0). In the highly doped contact regions, the
Fermi level (dotted line) lies high up in the conduction band (yellow),
where the dispersion is parabolic. In the central region, the Fermi level
lies in the valence band (red), and is close to the charge neutrality
point, where the dispersion is modified due to the two Dirac mini-
cones and the saddle point associated with the Lifshitz transition.
Shading indicates occupied states.

points are positioned in the momentum plane at

p0 = p0(cos φ, sin φ), p0 = ±
√

2mw. (2)

After expanding H in Eq. (1) in momentum p − p0 around
these Dirac points (and keeping only linear terms), we find
that each is characterized by a Dirac velocity v∗ = p0/(2m).

In the following, we study how this strain-induced change
in the topology of the electronic bands affects the transport
properties of a device made of a strained flake of BLG,
where a narrow and wide strip of width Ly � Lx sits between
two highly doped BLG regions suspended over two metallic
contacts. The band alignment in such a device is sketched in
Fig. 2. Metallic electrodes heavily dope BLG in the vicinity of
the contacts, thus determining two leads (regions I and III) with
a high carrier density. An external electrostatic gate controls
the doping, and, thus, the chemical potential μ of the electrons
in the middle part of the flake (region II), which we consider
to be close to the neutrality point. In our model, this doping
profile is taken into account by potential steps at the sample
edges

V (x) =
{

0 if 0 � x � Lx,

−V0 otherwise,
γ1

2 � V0 � w, μ.

In the remainder of this section, we identify the transport
modes in the various regions of the system.

The stated conditions make the energy dispersion in the
leads approximately parabolic, ε ≈ p2/(2m) − V0, and the
plane-wave states the same as chiral states in unstrained
BLG,1 with a negligible effect of the strain. For given
incidence angle θ of an incoming electron in the contact, we
parametrize the transverse momentum along the step as py =√

2m|V0 + ε| sin(θ ), and use the longitudinal component

pln
x = l

√
n2m|V0 + ε| − p2

y, l = ± (3)

to characterize propagating modes (n = +, real momentum)
and evanescent modes (n = −, complex momentum). For
propagating modes in the conduction band of the leads, as
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FIG. 3. (Color online) Left: isoenergetic lines at ε = −2, −5, −6, and −8 meV for strained bilayer graphene, with w = 5 meV. Center:
transmission probability T (ε,θ ) across a single potential step (n-p or n-n′ junction), from a highly doped region to a barely doped region, as
a function of energy and incidence angle of incoming electrons. Right: linear response conductance of the junction as a function of chemical
potential μ and temperature T . Results are shown for unstrained bilayer graphene (a), as well as uniaxially strained bilayer graphene for various
orientations of the strain axis with respect to the crystallographic axis x in Fig. 1: φ = 0 (b), φ = π/4 (c), and φ = π/2 (d).

considered here, the group velocity is directed parallel to
the momentum, and thus the index l coincides with the
propagation direction along the x axis, i.e., l = + denotes
a state propagating to the right.

We now turn to the modes in the weakly doped region II.
The left panels in Fig. 3 show isoenergetic lines for electrons

in the valence band at low energies for unperturbed [Fig. 3(a)]
as well as strained BLG [Figs. 3(b)–3(d)], with w = 5 meV
and for several orientations of the principal strain axis. States
corresponding to plane waves moving to the right are indicated
by red and green, and to the left by purple and blue. (Note
that for some of these modes, the group velocity is directed
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opposite to their momentum.) These isoenergetic lines reflect
that the low-energy dispersion relation in strained graphene is
determined by the modified condition

ε2 = 1

4m2

(
p̃2

x + p2
y

)2 − 1

m
w

(
p̃2

x − p2
y

)
cos(2φ)

− 1

m
2wp̃xpy sin(2φ) + w2 (4)

(here and in the following, an overscript tilde denotes quantities
specific for region II; energy ε and transverse momentum py

are conserved for elastic scattering at a straight interface).
For given values of energy and transverse momentum, this
equation may have four, two, or no real solutions p̃x , where
the latter situation arises at any given fixed energy beyond a
critical value |py | = py,c, which depends on the orientation of
the applied strain. We denote the corresponding propagation
direction in region I by θc, py,c = √

2m|V0 + ε| sin(θc), which
signifies the critical angle beyond which electrons from
the lead only couple into evanescent modes, which do not
contribute toward transport. As such, restricting the analysis
to the range of angles (−θc,θc) is enough to capture all essential
transport features. Below the critical value and for large values
of |ε|, there are always two real and two complex solutions,
while for small |ε|, there are two or four real solutions, which
depends on the propagation direction and on the orientation of
the applied strain, as we now discuss in detail.

For the unstrained case [neglecting w in Eq. (4)], the
parameters in region II are given [in analogy to Eq. (3)] by

p̃ln
x = l sign(ε)

√
n2m|ε| − p2

y. (5)

Here, p̃++
x (p̃−+

x ) is real and corresponds to right-moving
(left-moving) plane waves, while p̃−−

x (p̃+−
x ) corresponds to

evanescent waves decaying to the right (left). [The factor
sign(ε) accounts for the fact that in the valence band, the
group velocity is directed opposite to the momentum.]

For strained BLG with strain orientation φ = 0, we find
from Eq. (4) that

p̃ln
x = l sign(ε)

√
n

√
4m2ε2 − 8mwp2

y − p2
y + 2mw, (6)

where n,l = ±. The left panel of Fig. 3(b) shows examples
of several isoenergetic lines, with strain-induced Dirac points
on the axis px in the momentum space. By inspecting Eq. (6),
one notices that for |ε| < w and py �

√
mε2/(2w) [angles

where sin(θ ) �
√

ε2/(4w|V0 + ε|)], all four momenta are real
[p̃++

x (red), p̃−−
x (green), p̃+−

x (purple), p̃−+
x (blue)] and the

Fermi line is split into two pockets. When ε is slightly below
(above) the LiTr in the valence (conduction) band, |ε| > w,
the Fermi line is continuous but deformed. For small values
of |py |, Eq. (4) then gives two real solutions (p̃++

x , p̃−+
x ) and

two imaginary solutions (p̃−−
x , p̃+−

x ), while for larger values
of |py | (just below the critical value py,c) there are four real
solutions.

Figure 3(c) illustrates the propagating modes for strain
with orientation φ = π/4, where the momenta were found
numerically from Eq. (4). The colors distinguish right-moving
plane waves (p̃++

x red, p̃−−
x green) and left-moving plane

waves (p̃+−
x purple, p̃−+

x blue). We now find at most two real

solutions for fixed energy and transverse momentum. Above
the LiTr in the valence band, there is a range of transverse
momenta around py = 0 (normal incidence from the leads) in
which there are no propagating modes in region II.

For the strain axis oriented at φ = π/2 [Fig. 3(d)], the four
solutions of Eq. (4) are

p̃ln
x = l sign(ε)

√
n

√
4m2ε2 + 8mwp2

y − p2
y − 2mw, (7)

where, as before, n = ± and l = ±. By inspecting Eq. (7), we
find that for all energies and angles below θc, only the momenta
p̃l+

x are real. In Fig. 3(d), the corresponding propagating
waves are marked red (p̃++

x , right moving) and blue (p̃−+
x ,

left moving). Above the LiTr in the valence band, there is
again a range of transverse momenta around py = 0 in which
no propagating modes exist in region II.

III. TRANSPORT ACROSS n- p AND n-n′ JUNCTIONS

In this section, we study how the presence of strain affects
the electron transmission across a single potential step, from a
heavily doped region I to the low-density region II. Depending
on the sign of the doping, this can be an n-p (μ < 0) or n-n′
(μ > 0) junction. In the Landauer-Büttiker approach,19–22 the
conductance G of such a junction is determined by the energy
and angular dependence of the transmission probabilityT (ε,θ )
of an electron in the conduction band incident from the left to
emerge in the valence (or conduction) band at the right of the
interface.

A. Transmission probability

To calculate the transmission probability T (ε,θ ), we em-
ploy the transfer matrix method.22 Using separation of vari-
ables (allowed for a straight interface), the spinor eigenstates
of Eq. (1) can be written as 	I,II(x,y) = 
I,II(x)eipyy , where


I(x) =
∑
l,n

aln√
vln

(
1

αln

)
eipln

x x,


II(x) =
∑
l,n

bln√
ṽln

(
1

βln

)
eip̃ln

x x,

(8)

αln = − 1
2m

(
pln

x + ipy

)2

V0 + ε
,

βln = − 1
2m

(
p̃ln

x + ipy

)2 + we2iφ

ε
.

Here, as before, indices I and II label regions to the
left and right of the potential step, l,n = ± discrimi-
nate the branches of longitudinal momentum, aln, bln are
the wave amplitudes, and vln = |∂ε/∂pln

x |, ṽln = |∂ε/∂p̃ln
x |

are the longitudinal components of the group velocity. [Note
that in the conduction band (ε > 0) and in the valence band
(ε < 0), the group velocities for fixed electron momentum are
oppositely directed.]
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The transfer matrix M1 relates the amplitudes aln and bln

on the two sides from the interface according to⎛⎜⎜⎜⎝
b++
b−+
b−−
b+−

⎞⎟⎟⎟⎠ = M1

⎛⎜⎜⎜⎝
a++
a−+
a−−
a+−

⎞⎟⎟⎟⎠ . (9)

To build this matrix, we employ the continuity of the electron
wave function 
I(0) = 
II(0) and its derivative 
 ′

I(0) =

 ′

II(0) at the potential step. In this way, we find that the transfer
matrix takes the form

M1 = B−1A, (10)

with

A =

⎛⎜⎜⎜⎝
1 1 1 1

α++ α−+ α−− α+−
p++

x p−+
x p−−

x p+−
x

α++p++
x α−+p−+

x α−−p−−
x α+−p+−

x

⎞⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎝
1√
v++

0 0 0

0 1√
v−+

0 0

0 0 1√
v−−

0

0 0 0 1√
v+−

⎞⎟⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎝
1 1 1 1

β++ β−+ β−− β+−
p̃++

x p̃−+
x p̃−−

x p̃+−
x

β++p̃++
x β−+p̃−+

x β−−p̃−−
x β+−p̃+−

x

⎞⎟⎟⎠

×

⎛⎜⎜⎜⎜⎝
1√
ṽ++

0 0 0

0 1√
ṽ−+

0 0

0 0 1√
ṽ−−

0

0 0 0 1√
ṽ+−

⎞⎟⎟⎟⎟⎠ .

In what follows, we characterize waves by their cor-
responding momentum and amplitude. In the contact, we
assume that there are right-moving propagating waves (p++

x ,
a++ = 1) which can be transmitted into region II or reflected
by the potential step V0 back into region I. Reflected waves
become left-moving propagating waves (p−+

x , a−+ 	= 0) and
evanescent waves decaying to the left (p−−

x , a−− 	= 0). From
this, Eq. (9) becomes⎛⎜⎜⎜⎝

b++
b−+
b−−
b+−

⎞⎟⎟⎟⎠ = M1

⎛⎜⎜⎜⎝
1

a−+
a−−

0

⎞⎟⎟⎟⎠ , (11)

and the transmission coefficient can be found using

T = 1 − |a−+|2. (12)

This definition is the most convenient for the problem studied
here since there is only one left-propagating mode in region I,
whereas there are parametric regimes in which two different
right-propagating waves exist in region II. In the following, we
discuss how this scheme is applied in the four characteristic
cases illustrated in Fig. 3: (a) unstrained BLG, and (b)–(d)

BLG with various angles between the principal axis of uniaxial
strain and the crystallographic direction x in Fig. 1.

For the unstrained case, using the plane-wave parameters
determined in Eq. (5), Eq. (11) becomes⎛⎜⎜⎜⎝

b++
0

0

b+−

⎞⎟⎟⎟⎠ = M1

⎛⎜⎜⎜⎝
1

a−+
a−−

0

⎞⎟⎟⎟⎠ . (13)

Solving for the wave amplitude a−+ numerically and then
using Eq. (12), we obtain the transmission probability shown
in the middle panel of Fig. 3(a). This reproduces the ε → −ε

asymmetry for transmission of normally incident electrons
(θ = 0), with vanishing T (ε,0) = 0 for ε < 0 but finite T (ε,0)
for ε > 0, found in earlier studies of BLG junctions and the
Klein paradox23–25 (as opposed to the perfect transmission for
θ = 0 in monolayer graphene junctions23,24). This asymmetry
can be attributed to the different chirality of charge carriers in
the conduction and valence bands.

For the strain axis oriented at φ = 0, using the plane-wave
parameters determined in Eq. (6) and solving for the amplitude
a−+ in the set of linear equations in Eq. (11), we numerically
obtain the transmission result plotted in the middle panel of
Fig. 3(b). Our result shows T (ε,θ = 0) 	= 0 at any |ε| < w, as
opposed to unstrained case in Fig. 3(a). The difference between
transmission at θ = 0 for unstrained and strained BLG can
be explained as follows. Expanding the Hamiltonian (1) in
momentum around the Dirac points ±p0 of the strain-induced
mini-cones [Eq. (2)], and keeping only linear terms, we find
two Hamiltonians valid at |ε| � w:

H± ≈ ±v∗
(

0 (eiφπ)†

eiφπ 0

)
, π = 2(δpx + iδpy), (14)

where δp is a small deviation of the electron momentum from
±p0, v∗ = p0/(2m) is the effective Dirac velocity, and eiφ is a
phase factor which determines the position of the Dirac points
in the momentum plane. By solving the Schrödinger equation
for each of these Hamiltonians and then employing Eq. (11),
we can compute the transmission probability due to the states
in each cone separately. The small insert in the middle panel of
Fig. 3(b) shows T (θ ) at ε = −0.2 meV for the left and the right
Dirac mini-cones in red and green, respectively. Transmission
to the left mini-cone is zero at θ = 0 and increases away from
normal incidence, similar to the case of parabolic dispersion.
Transmission to the right mini-cone, on the other hand, exhibits
a maximum at θ = 0 and slowly decreases for angles away
from θ = 0, which resembles the situation for monolayer
graphene.26 Therefore, the strain-induced mini-cones modify
the chirality of the low-energy states.

For the strain axis oriented at φ = π/4, we first verify
numerically for every angle of incidence and energy which
momenta correspond to plane waves moving to the right (left)
and evanescent waves decaying to the right (left), respectively.
Then, we use Eqs. (10) and (11) and solve for the amplitude
a−+ of the wave reflected back into the lead I, taking into
account all physically allowed evanescent and propagating
modes in region II. The transmission shown in the middle
panel of Fig. 3(c) exhibits two distinct peaks, as long as the
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Fermi line is split into two pockets. For a small energy range
below the LiTr in the valence band, T (ε,θ = 0) 	= 0, which
again can be attributed to the strain-induced modification of
chirality of the low-energy states. Beyond the LiTr, where the
effect of strain becomes weaker and the Fermi line becomes
circular, we find that T (ε,θ = 0) → 0.

For the strain axis oriented at φ = π/2 [with plane-wave
parameters determined in Eq. (7)], for all transverse momenta
and energies allowing for propagating states in region II, the
corresponding linear system of equations is again the same
as in Eq. (13). By solving these equations numerically, we
obtain the transmission probability shown in Fig. 3(d). As a
function of incidence angle θ , the transmission now exhibits
two distinct peaks for all energies in the considered range. As
in the nonstrained case [Fig. 3(a)], this orientation of the strain
delivers T (ε < 0,θ = 0) = 0.

Irrespective of the modifications of chirality, in all four
cases there is a marked difference in the transmission strength
for ε > 0 and ε < 0. For ε < 0, the interface is an n-p
junction and an electron incoming in the conduction band
of the lead (region I) emerges in the valence band at the right
from interface (region II). For ε > 0, the electron stays in the
conduction band both at the left and right from the interface,
which is a better transmitting n-n′ junction.

B. Conductance

Based on the above results for the transmission probability,
we employ the Landauer-Büttiker formalism19 to calculate the
conductance of the n-p or n-n′ junction. Taking into account
two valleys and two spins, as well as integrating over the angle
of incidence and electron energy (as determined by the Fermi
distribution with finite temperature T ), we arrive at the junction
conductance

G(μ,T ) = 4e2

h

Ly

λF

g,

(15)

g = 1

2π

1

4kBT

∫ ∞

−∞
dε

√
2mλ2

F

h̄2 |ε + V0|
cosh2

(
ε−μ

2kBT

)
×

∫ π/2

−π/2
T (ε,θ ) cos(θ )dθ .

Here, λF ≈ 2πh̄
√

1/2mV0 is the Fermi wavelength in lead I,
kB is the Boltzmann constant, and T (ε,θ ) is the transmission
at fixed energy and angle of incidence, determined above. By
performing the integration numerically, we obtain the con-
ductance as a function of chemical potential and temperature,
which is shown in the right panels of Fig. 3.

For unstrained BLG [Fig. 3(a)], where the dispersion is
parabolic, the conductance exhibits a minimum at μ = 0 and
has an asymmetric but monotonic behavior for both μ < 0 (n-
p junction) and μ > 0 (n-n′ junction). Furthermore, for μ = 0,
the conductance increases monotonously with temperature.
In the strained cases [Figs. 3(b)–3(d)], the increase in con-
ductance with temperature is still seen. However, depending
on the strain orientation φ, G(μ,T ) can be monotonic or
nonmonotonic. For φ = 0 [Fig. 3(b)], the conductance at low
temperatures exhibits an anomaly: in the region μ < 0, there
is an additional local minimum as well as a local maximum.

The local maximum is located at μ ≈ −w (μ ≈ −5 meV
for parameters used in the figure), which corresponds to the
LiTr energy. For φ = π/4 [Fig. 3(c)], the conductance at low
temperatures exhibits a protrusion and a shift in slope, which
again occur near the LiTr in the valence band. For φ = π/2
[Fig. 3(d)], the conductance G(μ,T ) is monotonic and quite
similar to that calculated for BLG with a parabolic spectrum.

All conductance plots show an asymmetry about the mini-
mum at μ = 0. As discussed for the transmission probability,
this difference is determined by the chiral sublattice structure
of the plane waves, which in BLG suppresses the transmission
at a potential step between regions of opposite polarity. Note
that the anomalous behavior at μ = −w is specific for the n-p
junction regime of the system, and does not occur in the n-n′
junction regime, which does not exhibit an anomaly at μ = w.
These features allow one to single out the anomalous T and
μ dependence of the conductance for junctions with different
orientation of the strain.

IV. TRANSPORT ACROSS n- p-n AND n-n′-n JUNCTIONS

All the features found in the parametric dependencies of the
transmission across a single potential step appear also in the
transport properties of the two-terminal ballistic device (with
two steps) sketched in Fig. 2. In particular, the ε → −ε and
μ → −μ asymmetry and the anomalous temperature depen-
dence at μ = −w (in the vicinity of the saddle point in the
valence band) also persist in this “potential barrier” geometry,
and indeed are further enhanced. In addition to those, the
energy and angle dependence of the transmission coefficient
acquires a resonance structure due to the interference between
multiply reflected waves (Fabry-Pérot resonances). To take
this into account, we compute the transmission of the device
sketched in Fig. 2 considering both interfaces, as well as the
ballistic electron propagation between the interfaces.

The transfer matrix M1 = B−1A of the first interface is
given by Eq. (10). Due to symmetry, the transfer matrix of the
second interface is M2 = M−1

1 = A−1B. The transfer matrix
of the whole system (n-p-n or n-n′-n junction) is then given
by

� = M2SM1 = M−1
1 SM1 , (16)

where

S =

⎛⎜⎜⎜⎜⎝
eip̃++

x Lx 0 0 0

0 eip̃−+
x Lx 0 0

0 0 eip̃−−
x Lx 0

0 0 0 eip̃+−
x Lx

⎞⎟⎟⎟⎟⎠ (17)

describes the ballistic electron propagation inside the “barrier”
region II. Note that the factors in the matrices A and B that
normalize the plane-wave states in region II to normal flux
cancel out in the matrix �. From this, we can relate the
amplitudes aln of the wave function in the source lead [Eq. (8)]
to the amplitudes cln of the wave function in the drain lead,


III(x) =
∑
l,n

cln√
vln

(
1

αln

)
eipln

x x,
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by ⎛⎜⎜⎜⎝
c++
c−+
c−−
c+−

⎞⎟⎟⎟⎠ = �

⎛⎜⎜⎜⎝
a++
a−+
a−−
a+−

⎞⎟⎟⎟⎠ .

To determine the transmission coefficient

T (ε,θ ) = |c++|2, (18)

we take boundary conditions c−+ = c−− = a+− = 0, a++ =
1, and find c++ by solving the equation⎛⎜⎜⎜⎝

c++
0

0

c+−

⎞⎟⎟⎟⎠ = �

⎛⎜⎜⎜⎝
1

a−+
a−−

0

⎞⎟⎟⎟⎠ .

The numerically evaluated transmission probability T is
plotted in the left panels of Fig. 4, for the same range of
angles and energies (−10 meV< ε < 10 meV, V0 = 50 meV,
and w = 5 meV) as in Fig. 3. As in Refs. 23, 24 and 27, the
presence of two reflective interfaces in a BLG device causes the
appearance of resonances with high transmission. In the figure,
these are seen as bright strips. The scale of the oscillations
becomes finer for a longer sample length.

The right column in Fig. 4 shows the finite-temperature con-
ductance in a long sample. The interference fringes are washed
out by smearing of the Fermi step [at kBT � h̄2/(mL2

x)] and
the integration over the angle. To obtain this finite-temperature
conductance, one can use the exactly calculated T (ε,θ ) and
insert this into Eq. (15). Here, we describe an accurate
approximation of these results, which allows one to relate the
pronounced anomalies of the finite-temperature conductance
to angularly smoothed transmission probabilities 〈T 〉 (smeared
over a small angular range δθ covering many oscillations),
shown in the middle column in Fig. 4. Conveniently, in the
limit of Lx → ∞, evanescent modes die off before reaching
the second interface, so that in region II only plane waves
(with real p̃x) contribute toward transmission. To eliminate the
negligible contribution of evanescent waves, we first restrict
the analysis to the range of angles �θ = 2θc where plane
waves exist inside the barrier; θc is energy dependent and
different for each orientation of applied strain. Then, we group
the exponents which emerge from Eq. (17) into propagating
and decaying waves (where the latter have complex p̃x),
and for decaying waves approximate tanh(|Im[p̃x]|Lx) → 1
and cosh−1(2|Im[p̃x]|Lx) → 0. The conductance then follows
from

G(μ,T ) = 4e2

h

Ly

λF

g ,

(19)

g = 1

2π

1

4kBT

∫ ∞

−∞
dε

√
2mλ2

F

h̄2 |ε + V0|
cosh2

(
ε−μ

2kBT

)
×

∫ θc

−θc

〈T (ε,θ0)〉 cos(θ0)dθ0.

Since the details of the analysis of 〈T 〉 depend on the
electron energy and orientation of the strain axis, we sketch

the derivation separately for the corresponding characteristic
parametric regimes.

First, for the range of parameters for which Eq. (4) has
only two real solutions, the described procedure leads to an
expression of the form

T (ε,θ ) = X1

X2 + X3 cos(2p̃++
x Lx) + X4 sin(2p̃++

x Lx)
.

Here, Xi are nonoscillating functions of pln
x , p̃ln

x , py , ε, V0, w,
and φ, which are not given explicitly due to their complexity.
To average T (ε,θ ), we first expand the real momenta in terms
of small deviations δθ in the angle, θ = θ0 + δθ , about some
−θc < θ0 < θc, such that

p̃++
x = p̃++

x |θ=θ0 + δθ

(
∂p̃++

x

∂θ

)∣∣∣∣
θ=θ0

.

As such,

T (ε,θ0) = X1

X2 + X3 cos(	 + Aδθ ) + X4 sin(	 + Aδθ )
,

where 	 = 2Lxp̃
++
x |θ=θ0 and A = 2Lx(∂p̃++

x /∂θ )|θ=θ0 . Im-
posing A�δθ = 2π , the average transmission over one period
is

〈T (ε,θ0)〉 = 1

2π

∫ 2π

0

X1dz

X2 + X3 cos(z) + X4 sin(z)

= X1√
X2

2 − X2
3 − X2

4

, z = Aδθ. (20)

Second, for the range of parameters where Eq. (4) has
four real solutions p̃−+

x = −p̃++
x and p̃+−

x = −p̃−−
x [such

as encountered in Fig. 3(b)], fast oscillations in the trans-
mission coefficient are due to combinations of sin(p̃+n

x Lx),
sin(2p̃+n

x Lx), cos(p̃+n
x Lx), and cos(2p̃+n

x Lx). Expanding in
terms of small deviations in angle

p̃+n
x = p̃+n

x |θ=θ0 + δθ

(
∂p̃+n

x

∂θ

)∣∣∣∣
θ=θ0

,

and denoting 	n = Lxp̃
+n
x |θ=θ0 and An = Lx(∂p̃+n

x /∂θ )|θ=θ0 ,
we find that the interference fringes are encoded in the
factors sin(	n + Anδθ ) and cos(	n + Anδθ ). Inspection of
the constant prefactors reveals that A+ ≈ A−. Neglecting
the phase 	n and imposing A+�δθ = 2π , the averaged
transmission over one period can then be written as

〈T (ε,θ0)〉 = 1

2π

∫ 2π

0

X (z)

Y(z)
dz,

X (z) = [X̄1 cos(z) + X̄2 sin(z)]2, (21)

Y(z) = X̄3 + X̄4 cos(2z) + X̄5 sin(2z) + X̄6 cos(4z)

+ X̄7 sin(4z),

and z = A+δθ ; here, X̄i are nonoscillating functions of
the same parameters as in the previous cases. The specific
expressions are again omitted because of their complexity.

In the analytical part of the studies of the transmission
problem, all functions Xi and X̄i have been found using
symbolic mathematical software. The results of the integrals
in Eqs. (20) and (21) are shown in the central column in

165429-7



GRADINAR, SCHOMERUS, AND FAL’KO PHYSICAL REVIEW B 85, 165429 (2012)

FIG. 4. (Color online) Transmission coefficient and conductance of n-p-n and n-n′-n junctions with nonstrained bilayer graphene (a), as
well as strained bilayer graphene with the uniaxial strain axis at an angle for φ = 0 (b), φ = π/4 (c), and φ = π/2 (d) from crystallographic
axis x. Left: transmission probability T (ε,θ ) obtained in an exact calculation. Center: transmission probability obtained by averaging over fast
oscillations after the contribution of evanescent waves is neglected. Right: linear response conductance as a function of chemical potential and
temperature. All calculations are performed for experimentally accessible values w = 5 meV, V0 = 50 meV, and Lx = 1 μm.

Fig. 4. The doping (chemical potential μ) and temperature
dependence of the two-terminal conductance of the device
follow from Eq. (19), and coincide with a high accuracy with
the one calculated using Eq. (15) together with the exact values
T (ε,θ ).

The behavior of G(μ,T ) in the right column of Fig. 4
displays all the features of the conductance of a single step

in enhanced form. In particular, the conductance for φ = 0
[Fig. 4(b)] exhibits a local maximum and a second local
minimum positioned at the same chemical potentials as for
a single junction. For φ = π/2 [Fig. 4(d)], the conductance
is monotonic. For φ = π/4 [Fig. 4(c)], the protrusion in the
conductance of a single junction (at the LiTr) has developed
into a clear local maximum.
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V. SUMMARY

In this article, we have shown that the linear response
conductance G(μ,T ) of an n-p-n junction in strained bilayer
graphene has a nonmonotonic dependence on doping and
temperature, which varies in size and form as a function of
the crystallographic orientation of the principal strain axis.
To understand this behavior, we studied the transmission
and conductance for a single interface (n-p junction), and
used the obtained results to conclude that the nonmonotonic
behavior is due to the modification of chirality (thus, the
feature responsible for the occurrence of the Klein paradox
in graphene). Uniaxial strain changes the chirality (sublattice

composition) of the electronic plane-wave states in the vicinity
of the saddle point (Lifshitz transition) in the low-energy
electron spectrum of strained bilayer graphene, which results
in the observed nonmonotonicity of the linear response
conductance.
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