7 research outputs found

    Dynamics of a viscous vesicle in linear flows

    Full text link
    An analytical theory is developed to describe the dynamics of a closed lipid bilayer membrane (vesicle) freely suspended in a general linear flow. Considering a nearly spherical shape, the solution to the creeping-flow equations is obtained as a regular perturbation expansion in the excess area. The analysis takes into account the membrane fluidity, incompressibility and resistance to bending. The constraint for a fixed total area leads to a non-linear shape evolution equation at leading order. As a result two regimes of vesicle behavior, tank-treading and tumbling, are predicted depending on the viscosity contrast between interior and exterior fluid. Below a critical viscosity contrast, which depends on the excess area, the vesicle deforms into a tank--treading ellipsoid, whose orientation angle with respect to the flow direction is independent of the membrane bending rigidity. In the tumbling regime, the vesicle exhibits periodic shape deformations with a frequency that increases with the viscosity contrast. Non-Newtonian rheology such as normal stresses is predicted for a dilute suspension of vesicles. The theory is in good agreement with published experimental data for vesicle behavior in simple shear flow

    11th German Conference on Chemoinformatics (GCC 2015)

    No full text
    corecore