193 research outputs found

    Overview of the design of the ITER heating neutral beam injectors

    Get PDF
    The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7MWof 1 MeVD0 or 0.87 MeVH0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam\uf0a0(NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation ofH 12 andD 12 remains acceptable ( 4856%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: \u2022 negative ions are harder to create so that they can be extracted and accelerated from the ion source; \u2022 electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; \u2022 negative ions are easily lost by collisions with the background gas in the accelerator; \u2022 electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; \u2022 positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; \u2022 electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and theNBcell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of theHNBinjectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushingwhich separates the vacuum of the beamline fromthehighpressureSF6 of the high voltage (1MV) transmission line, through which the power, gas and coolingwater are supplied to the beam source. Also themagnetic field reduction system is not described

    Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray micro-beam

    Get PDF
    Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-timeresolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed

    The Role of “Critical” Ultrasound Reassessment in the Decision-Making of Bethesda III Thyroid Nodules

    Get PDF
    Background and Objectives: Bethesda III (BIII) thyroid nodules have an expected malignancy rate of 5-15%. Our purpose was to assess which US criteria are most associated with cancer risk, and the value of critical ultrasound (US) reassessment. Methods: From 2018 to 2022, 298 BIII nodules were enrolled for thyroidectomy (79 malignancies). We evaluated ultrasonographic data: hechogenicity, intralesional vascularization, spiculated margins, micro-calcifications, "taller than wide" shape, extra-thyroidal growth, size increase, as well as their association with histology. We also evaluated if the ultrasound reassessment modified the strategy. Results: Spiculated margins and microcalcification were significantly correlated with malignancy risk. Spiculated margins showed a specificity of 0.95 IC95% (0.93-0.98); sensitivity 0.70 IC95% (0.59-0.80). Microcalcifications showed a sensitivity of 0.87 CI95% (0.80-0.94); specificity 0.75 CI95% (0.72-0.83). The presence of these signs readdressed the strategy in 76/79 cases Then, the indication for surgery was appropriate in 75% of cases. Conclusions: Microcalcifications and spiculated margins should be routinely sought during a final ultrasound reassessment in BIII nodules. These signs allowed for a modification of the strategy in favor of surgery in 96% of the cases that were not otherwise referred to surgery. The importance of integrating ultrasound and cytology in the evaluation of BIII thyroid nodules is confirmed. Reassessment with ultrasound of BIII nodules allowed for a redirection of the surgical choice

    Management of surgical diseases of thyroid gland indications of the United Italian Society of Endocrine Surgery (SIUEC)

    Get PDF
    A task force of the United Italian society of Endocrine Surgery (SIUEC) was commissioned to review the position statement on diagnostic, therapeutic and health‑care management protocol in thyroid surgery published in 2016, at the light of new technologies, recent oncological concepts, and tailored approaches. The objective of this publication was to support surgeons with modern rational protocols of treatment that can be shared by health-care professionals, taking into account important clinical, healthcare and therapeutic aspects, as well as potential sequelae and complications. The task force consists of 13 members of the SIUEC highly trained and experienced in thyroid surgery. The main topics concern clinical evaluation and preoperative workup, patient preparation for surgery, surgical treatment, non-surgical options, postoperative management, prevention and management of major complications, outpatient care and follow-up

    Preclinical atherosclerosis, metabolic syndrome and risk of cardiovascular events

    Get PDF
    Atherosclerotic disease is a chronic disorder developing insidiously throughout the life and usually progressing to an advanced stage by the time symptoms occur. In order to realize cardiovascular (CV) prevention, the detection of asymptomatic but diseased patients is crucial for an early intervention, since in these subjects there are opportunities to alter the progression of disease and the outcome (1). However, the simply analysis of risk factors don’t permits to identify always these subjects since it doesn’t informs about the effect that risk factors (RF) had already provoked and may more provoke on the individual vasculature. Besides, the risk factors known predict can explain only the 90 percent of cardiovascular disease (CVD) and traditional algorithms for prediction of CV risk failed to predict a proportion of cardiovascular events (CVE), realizing a “risk factors prediction gap” (2). It may be explained by several reasons: the epidemiology-derived models, based on the prediction of long-term risk, may not accurately predict short-term events, they don’t take into consideration emerging and novel risk factors; risk algorithms don’t identify, among patients with neither a previous history of CVD nor an high risk for atherosclerotic disease, those who will develop acute myocardial infarction and/or sudden coronary death as first CVD manifestation, and this may be due to the fact that the factors responsible of plaque formation and growth are not necessarily the same responsible of its instability and rupture, being the latter related to inflammation, thrombosis and plaque morphology (3).So, a possible approach to evaluate the individual global cardiovascular risk with more accurateness is to identify risk factors combination that more easily produces vascular damage, or alternatively, to evaluate directly the arterial wall and its damage degree. The former approach is performed by the evaluation of metabolic syndrome, the latter by the non-invasive study of pre-ATS markers

    Management of surgical diseases of thyroid gland indications of the United Italian Society of Endocrine Surgery (SIUEC)

    Get PDF
    A task force of the United Italian society of Endocrine Surgery (SIUEC) was commissioned to review the position statement on diagnostic, therapeutic and health-care management protocol in thyroid surgery published in 2016, at the light of new technologies, recent oncological concepts, and tailored approaches. The objective of this publication was to support surgeons with modern rational protocols of treatment that can be shared by health-care professionals, taking into account important clinical, healthcare and therapeutic aspects, as well as potential sequelae and complications. The task force consists of 13 members of the SIUEC highly trained and experienced in thyroid surgery. The main topics concern clinical evaluation and preoperative workup, patient preparation for surgery, surgical treatment, non-surgical options, postoperative management, prevention and management of major complications, outpatient care and follow-up

    Modulation of frustration in folding by sequence permutation

    Get PDF
    Folding of globular proteins can be envisioned as the contraction of a random coil unfolded state toward the native state on an energy surface rough with local minima trapping frustrated species. These substructures impede productive folding and can serve as nucleation sites for aggregation reactions. However, little is known about the relationship between frustration and its underlying sequence determinants. Chemotaxis response regulator Y (CheY), a 129-amino acid bacterial protein, has been shown previously to populate an off-pathway kinetic trap in the microsecond time range. The frustration has been ascribed to premature docking of the N- and C-terminal subdomains or, alternatively, to the formation of an unproductive local-in-sequence cluster of branched aliphatic side chains, isoleucine, leucine, and valine (ILV). The roles of the subdomains and ILV clusters in frustration were tested by altering the sequence connectivity using circular permutations. Surprisingly, the stability and buried surface area of the intermediate could be increased or decreased depending on the location of the termini. Comparison with the results of small-angle X-ray-scattering experiments and simulations points to the accelerated formation of a more compact, on-pathway species for the more stable intermediate. The effect of chain connectivity in modulating the structures and stabilities of the early kinetic traps in CheY is better understood in terms of the ILV cluster model. However, the subdomain model captures the requirement for an intact N-terminal domain to access the native conformation. Chain entropy and aliphatic-rich sequences play crucial roles in biasing the early events leading to frustration in the folding of CheY
    • …
    corecore