58 research outputs found

    Assessing the source and delivery processes of organic carbon within a mixed land use catchment using a combined n-alkane and carbon loss modelling approach

    Full text link
    peer reviewedPurpose: Understanding fluxes of soil organic carbon (OC) from the terrestrial to aquatic environments is crucial to evaluate their importance within the global carbon cycle. Sediment fingerprinting (SF) is increasingly used to identify land use-specific sources of OC, and, while this approach estimates the relative contribution of different sources to OC load in waterways, the high degree of spatial heterogeneity in many river catchments makes it challenging to precisely align the source apportionment results to the landscape. In this study, we integrate OC SF source apportionment with a carbon loss model (CLM) with the aim of: (i) reducing ambiguity in apportioning OC fluxes when the same land use exists in multiple locations within a catchment; and (ii) identifying factors affecting OC delivery to streams, e.g., buffer zones. Methods: Two main approaches were used in this study: (i) identification of the sources of freshwater bed sediment OC using n-alkane biomarkers and a Bayesian-based unmixing model; and (ii) modelling and analysis of spatial data to construct a CLM using a combination of soil OC content modelling, RUSLE soil erosion modelling and a connectivity index. The study was carried out using existing OC and n-alkane biomarker data from a mixed land use UK catchment. Results: Sediment fingerprinting revealed that woodland was the dominant source of the OC found in the streambed fine sediment, contributing between 81 and 85% at each streambed site. In contrast, CLM predicted that arable land was likely the dominant source of OC, with negligible inputs from woodland. The areas of the greatest OC loss in the CLM were predicted to be from arable land on steeper slopes surrounding the stream channels. Results suggest extensive riparian woodland disconnected upslope eroded soil OC and, concomitantly, provided an input of woodland-derived OC to the streams. It is likely the woodland contribution to streambed OC is derived from litter and leaves rather than soil erosion. Conclusion: This study demonstrates how location-specific OC sources and delivery processes can be better determined using sediment fingerprinting in combination with CLM, rather than using sediment fingerprinting alone. It highlights that, although wooded riparian buffer strips may reduce the impact of upslope, eroded soil OC on waterways, they could themselves be a source of OC to stream sediments through more direct input (e.g., organic litter or leaf debris). Characterising this direct woodland OC as a separate source within future fingerprinting studies would allow the contributions from any eroded woodland soil OC to be better estimated

    Superconductivity in quantum-dot superlattices composed of quantum wire networks

    Full text link
    Based on calculations using the local density approximation, we propose quantum wire networks with square and plaquette type lattice structures that form quantum dot superlattices. These artificial structures are well described by the Hubbard model. Numerical analysis reveals a superconducting ground state with transition temperatures TcT_c of up to 90 mK for the plaquette, which is more than double the value of 40 mK for the square lattice type and is sufficiently high to allow for the experimental observation of superconductivity.Comment: 10 pages, 4 figure

    Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science

    Full text link

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Cas tests: applications partielles du système hiérarchique multi-échelle. Deliverable 2.1 Part 4

    No full text
    The research objective for Deliverable 2.1 is to develop a process-based, multi-scale, hierarchical framework to support river managers in assessing the hydromorphological character of rivers, exploring the causes of hydromorphological problems, and devising sustainable management solutions. Part 4 of Deliverable 2.1 provides four partial applications of the framework described in Part 1 to case study catchments (River Tweed, UK; River Loire, France; River Tagliamento, Italy; Rivers Lech and Lafnitz, Austria). These case studies are mainly confined to the delineation and characterisation phases of the framework, but they incorporate additional environmental settings to the complete case studies provided in Part 3

    Un système hiérarchique multi-échelle et des indicateurs pour les processus et formes hydromorphologiques

    No full text
    The research objective for Deliverable 2.1 is to develop a process-based, multi-scale, hierarchical framework to support river managers in assessing the hydromorphological character of rivers, exploring the causes of hydromorphological problems, and devising sustainable management solutions
    corecore