3,924 research outputs found

    Generalized n-Poisson brackets on a symplectic manifold

    Full text link
    On a symplectic manifold a family of generalized Poisson brackets associated with powers of the symplectic form is studied. The extreme cases are related to the Hamiltonian and Liouville dynamics. It is shown that the Dirac brackets can be obtained in a similar way.Comment: Latex, 10 pages, to appear in Mod. Phys. Lett.

    A variational principle for volume-preserving dynamics

    Full text link
    We provide a variational description of any Liouville (i.e. volume preserving) autonomous vector fields on a smooth manifold. This is obtained via a ``maximal degree'' variational principle; critical sections for this are integral manifolds for the Liouville vector field. We work in coordinates and provide explicit formulae

    The Influence of Medicare Home Health Payment Incentives: Does Payer Source Matter?

    Get PDF
    During the late 1990s, an interim payment system (IPS) was instituted to constrain Medicare home health care expenditures. Previous research has largely focused on the implications of the IPS for Medicare patients, but our study broadens the analysis to consider patients with other payer sources. Using the National Home and Hospice Care Survey, we found similar effects of the IPS across payer types. Specifically, the IPS was associated with a decrease in access to care for the sickest patients, less agency assistance with activities of daily living, and shorter length-of-use. However, these changes did not translate into worse discharge outcomes.Medicare, health, incentives

    Reduction of Lie-Jordan Banach algebras and quantum states

    Full text link
    A theory of reduction of Lie-Jordan Banach algebras with respect to either a Jordan ideal or a Lie-Jordan subalgebra is presented. This theory is compared with the standard reduction of C*-algebras of observables of a quantum system in the presence of quantum constraints. It is shown that the later corresponds to the particular instance of the reduction of Lie-Jordan Banach algebras with respect to a Lie-Jordan subalgebra as described in this paper. The space of states of the reduced Lie-Jordan Banach algebras is described in terms of equivalence classes of extensions to the full algebra and their GNS representations are characterized in the same way. A few simple examples are discussed that illustrates some of the main results

    Examining the efficacy of a genotyping-by-sequencing technique for population genetic analysis of the mushroom Laccaria bicolor and evaluating whether a reference genome is necessary to assess homology

    Get PDF
    Given the diversity and ecological importance of Fungi, there is a lack of population genetic research on these organisms. The reason for this can be explained in part by their cryptic nature and difficulty in identifying genets. In addition the difficulty (relative to plants and animals) in developing molecular markers for fungal population genetics contributes to the lack of research in this area. This study examines the ability of restriction-site associated DNA (RAD) sequencing to generate SNPs in Laccaria bicolor. Eighteen samples of morphologically identified L. bicolor from the United States and Europe were selected for this project. The RAD sequencing method produced anywhere from 290 000 to more than 3 000 000 reads. Mapping these reads to the genome of L. bicolor resulted in 84 000-940 000 unique reads from individual samples. Results indicate that incorporation of non-L. bicolor taxa into the analysis resulted in a precipitous drop in shared loci among samples, suggests the potential of these methods to identify cryptic species. F-statistics were easily calculated, although an observable "noise" was detected when using the "All Loci" treatment versus filtering loci to those present in at least 50% of the individuals. The data were analyzed with tests of Hardy-Weinburg equilibrium, population genetic statistics (FIS and FST), and population structure analysis using the program Structure. The results provide encouraging feedback regarding the potential utility of these methods and their data for population genetic analysis. We were unable to draw conclusions of life history of L. bicolor populations from this dataset, given the small sample size. The results of this study indicate the potential of these methods to address population genetics and general life history questions in the Agaricales. Further research is necessary to explore the specific application of these methods in the Agaricales or other fungal groups

    Quantum-critical superconductivity in underdoped cuprates

    Full text link
    We argue that the pseudogap phase may be an attribute of the non-BCS pairing of quantum-critical, diffusive fermions near the antiferromagnetic quantum critical point. We derive and solve a set of three coupled Eliashberg-type equations for spin-mediated pairing and show that in some TT range below the pairing instability, there is no feedback from superconductivity on fermionic excitations, and fermions remain diffusive despite of the pairing. We conject that in this regime, fluctuations of the pairing gap destroy the superconducting condensate but preserve the leading edge gap in the fermionic spectral function.Comment: 5 pages, 3 figure

    Noncommutative differential calculus for Moyal subalgebras

    Full text link
    We build a differential calculus for subalgebras of the Moyal algebra on R^4 starting from a redundant differential calculus on the Moyal algebra, which is suitable for reduction. In some cases we find a frame of 1-forms which allows to realize the complex of forms as a tensor product of the noncommutative subalgebras with the external algebra Lambda^*.Comment: 13 pages, no figures. One reference added, minor correction

    Coherent vs incoherent pairing in 2D systems near magnetic instability

    Full text link
    We study the superconductivity in 2D fermionic systems near antiferromagnetic instability, assuming that the pairing is mediated by spin fluctuations. This pairing involves fully incoherent fermions and diffusive spin excitations. We show that the competition between fermionic incoherence and strong pairing interaction yields the pairing instability temperature TinsT_{ins} which increases and saturates as the magnetic correlation length ξ\xi \to \infty. We argue that in this quantum-critical regime the pairing problem is qualitatively different from the BCS one.Comment: 7 pages, 2 figure

    Jacobi structures revisited

    Full text link
    Jacobi algebroids, that is graded Lie brackets on the Grassmann algebra associated with a vector bundle which satisfy a property similar to that of the Jacobi brackets, are introduced. They turn out to be equivalent to generalized Lie algebroids in the sense of Iglesias and Marrero and can be viewed also as odd Jacobi brackets on the supermanifolds associated with the vector bundles. Jacobi bialgebroids are defined in the same manner. A lifting procedure of elements of this Grassmann algebra to multivector fields on the total space of the vector bundle which preserves the corresponding brackets is developed. This gives the possibility of associating canonically a Lie algebroid with any local Lie algebra in the sense of Kirillov.Comment: 20 page

    Geometrization of Quantum Mechanics

    Full text link
    We show that it is possible to represent various descriptions of Quantum Mechanics in geometrical terms. In particular we start with the space of observables and use the momentum map associated with the unitary group to provide an unified geometrical description for the different pictures of Quantum Mechanics. This construction provides an alternative to the usual GNS construction for pure states.Comment: 16 pages. To appear in Theor. Math. Phys. Some typos corrected. Definition 2 in page 5 rewritte
    corecore