748 research outputs found

    Prussian Blue-coated interdigitated array electrodes for possible analytical application

    Get PDF
    Thin films of iron(III) hexacyanoferrate(II) (Prussian Blue) were electrochemically deposited on interdigitated array (IDA) electrodes, yielding systems which can be considered as chemiresistors in sensing alkali metal ion concentrations in an adjacent electrolyte. This is due to the fact that the conductivity of the film being measured by a steady-state current on application of a voltage to the two-fingered electrodes of the IDA depends on both the redox stare of the film and the cation concentration in the electrolyte. From the dependence of the steady-state current on the electrode (bias) potential at variable cation concentrations for different alkali metal ions and for mixtures of alkali metal ions, the possibilities of analytical application were elucidated. In addition, by using the methods of staircase coulometry and scanning conductivity, the electron diffusion coefficient De was determined as a function of the redox state of Prussian Blue. It is concluded that Prussian Blue-coated IDA electrodes are, in principle, suitable as chemiresistors for the determination of alkali metal ion concentrations with increasing selectivity in the series Li < Na < K < Rb < Cs

    A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations

    Get PDF
    This work presents the results of a terrestrial multiple-receiver radio link experiment at 10.7 GHz. Results are shown in the form of the power levels recorded at several antennas attached to a receiving mast. Comparisons of the measurement data with theoretical predictions using a parabolic equation technique show that, due to the complex propagation environment of the troposphere in terms of the refractive index of air, closer agreement between measurements and simulations can be achieved during periods of standard refractive conditions

    Fabrication of Amperometric Electrodes

    Get PDF
    Carbon fiber electrodes are crucial for the detection of catecholamine release from vesicles in single cells for amperometry measurements. Here, we describe the techniques needed to generate low noise (<0.5 pA) electrodes. The techniques have been modified from published descriptions by previous researchers (1,2). Electrodes are made by preparing carbon fibers and threading them individually into each capillary tube by using a vacuum with a filter to aspirate the fiber. Next, the capillary tube with fiber is pulled by an electrode puller, creating two halves, each with a fine-pointed tip. The electrodes are dipped in hot, liquid epoxy mixed with hardener to create an epoxy-glass seal. Lastly, the electrodes are placed in an oven to cure the epoxy. Careful handling of the electrodes is critical to ensure that they are made consistently and without damage. This protocol shows how to fabricate and cut amperometric electrodes for recording from single cells

    Visual on-line learning in distributed camera networks

    Get PDF
    Automatic detection of persons is an important application in visual surveillance. In general, state-of-the-art systems have two main disadvantages: First, usually a general detector has to be learned that is applicable to a wide range of scenes. Thus, the training is time-consuming and requires a huge amount of labeled data. Second, the data is usually processed centralized, which leads to a huge network traffic. Thus, the goal of this paper is to overcome these problems, which is realized by a person detection system, that is based on distributed smart cameras (DSCs). Assuming that we have a large number of cameras with partly overlapping views, the main idea is to reduce the model complexity of the detector by training a specific detector for each camera. These detectors are initialized by a pre-trained classifier, that is then adapted for a specific camera by co-training. In particular, for co-training we apply an on-line learning method (i.e., boosting for feature selection), where the information exchange is realized via mapping the overlapping views onto each other by using a homography. Thus, we have a compact scenedependent representation, which allows to train and to evaluate the classifiers on an embedded device. Moreover, since the information transfer is reduced to exchanging positions the required network-traffic is minimal. The power of the approach is demonstrated in various experiments on different publicly available data sets. In fact, we show that on-line learning and applying DSCs can benefit from each other. Index Terms — visual on-line learning, object detection, multi-camera networks 1

    Global first-passage times of fractal lattices

    Get PDF
    The global first passage time density of a network is the probability that a random walker released at a random site arrives at an absorbing trap at time T. We find simple expressions for the mean global first passage time for five fractals: the d-dimensional Sierpinski gasket, T fractal, hierarchical percolation model, Mandelbrot-Given curve, and a deterministic tree. We also find an exact expression for the second moment and show that the variance of the first passage time, Var(T), scales with the number of nodes within the fractal N such that Var(T)similar to N(4/d), where d is the spectral dimension

    EF hand-mediated Ca2+- and cGMP-signaling in photoreceptor synaptic terminals

    Get PDF
    Photoreceptors, the light-sensitive receptor neurons of the retina, receive and transmit a plethora of visual informations from the surrounding world. Photoreceptors capture light and convert this energy into electrical signals that are conveyed to the inner retina. For synaptic communication with the inner retina, photoreceptors make large active zones that are marked by synaptic ribbons. These unique synapses support continuous vesicle exocytosis that is modulated by light-induced, graded changes of membrane potential. Synaptic transmission can be adjusted in an activity-dependent manner, and at the synaptic ribbons, Ca2+- and cGMP-dependent processes appear to play a central role. EF-hand-containing proteins mediate many of these Ca2+- and cGMP-dependent functions. Since continuous signaling of photoreceptors appears to be prone to malfunction, disturbances of Ca2+- and cGMP-mediated signaling in photoreceptors can lead to visual defects, retinal degeneration (rd), and even blindness. This review summarizes aspects of signal transmission at the photoreceptor presynaptic terminals that involve EF-hand-containing Ca2+-binding proteins

    Mechanisms of simultaneous linear and nonlinear computations at the mammalian cone photoreceptor synapse

    Get PDF
    Neurons enhance their computational power by combining linear and nonlinear transformations in extended dendritic trees. Rich, spatially distributed processing is rarely associated with individual synapses, but the cone photoreceptor synapse may be an exception. Graded voltages temporally modulate vesicle fusion at a cone’s ~20 ribbon active zones. Transmitter then flows into a common, glia-free volume where bipolar cell dendrites are organized by type in successive tiers. Using super-resolution microscopy and tracking vesicle fusion and postsynaptic responses at the quantal level in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus, we show that certain bipolar cell types respond to individual fusion events in the vesicle stream while other types respond to degrees of locally coincident events, creating a gradient across tiers that are increasingly nonlinear. Nonlinearities emerge from a combination of factors specific to each bipolar cell type including diffusion distance, contact number, receptor affinity, and proximity to glutamate transporters. Complex computations related to feature detection begin within the first visual synapse

    On Ramanujan's Q-function

    Get PDF
    This study provides a detailed analysis of a function which Knuth discovered to play a central role in the analysis of hashing with linear probing. The function, named after Knuth Q(n), is related to several of Ramanujan's investigations. It surfaces in the analysis of a variety of algorithms ans discrete probability problems including hashing, the birthday paradox, random mapping statistics, the "rho" method for integer factorization, union-find algorithms, optimum caching, and the study of memory conflicts. A process related to the complex asymptotic methods of singularity analysis and saddle point integrals permits to precisely quantify the behaviour of the Q(n) function. in this way, tight bounds are derived. They answer a question of Knuth (the art of Computer Programming, vol. 1, 1968), itself a rephrasing of earlier questions of Ramanujan in 1911-1913

    Photogenerated Carriers in SrTiO3 Probed by Mid-Infrared Absorption

    Full text link
    Infrared absorption spectra of SrTiO3_3 have been measured under above-band-gap photoexcitations to study the properties of photogenerated carriers, which should play important roles in previously reported photoinduced phenomena in SrTiO3_3. A broad absorption band appears over the entire mid-infrared region under photoexcitation. Detailed energy, temperature, and excitation power dependences of the photoinduced absorption are reported. This photo-induced absorption is attributed to the intragap excitations of the photogenerated carriers. The data show the existence of a high density of in-gap states for the photocarriers, which extends over a wide energy range starting from the conduction and valence band edges.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp
    corecore