18 research outputs found

    Using cascading Bloom filters to improve the memory usage for de Brujin graphs

    Get PDF
    De Brujin graphs are widely used in bioinformatics for processing next-generation sequencing data. Due to a very large size of NGS datasets, it is essential to represent de Bruijn graphs compactly, and several approaches to this problem have been proposed recently. In this work, we show how to reduce the memory required by the algorithm of [3] that represents de Brujin graphs using Bloom filters. Our method requires 30% to 40% less memory with respect to the method of [3], with insignificant impact to construction time. At the same time, our experiments showed a better query time compared to [3]. This is, to our knowledge, the best practical representation for de Bruijn graphs.Comment: 12 pages, submitte

    Article URL

    Get PDF
    This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. Space-efficient and exact de Bruijn graph representation based on a Bloom filte

    On the Representation of de Bruijn Graphs

    No full text
    The de Bruijn graph plays an important role in bioinformatics, especially in the context of de novo assembly. However, the representation of the de Bruijn graph in memory is a computational bottleneck for many assemblers. Recent papers proposed a navigational data structure approach in order to improve memory usage. We prove several theoretical space lower bounds to show the limitation of these types of approaches. We further design and implement a general data structure (DBGFM) and demonstrate its use on a human whole-genome dataset, achieving space usage of 1.5 GB and a 46% improvement over previous approaches. As part of DBGFM, we develop the notion of frequency-based minimizers and show how it can be used to enumerate all maximal simple paths of the de Bruijn graph using only 43 MB of memory. Finally, we demonstrate that our approach can be integrated into an existing assembler by modifying the ABySS software to use DBGFM.Comment: Journal version (JCB). A preliminary version of this article was published in the proceedings of RECOMB 201
    corecore