20 research outputs found
A companion to the preclinical common data elements for physiologic data in rodent epilepsy models. A report of the TASK3 Physiology Working Group of the ILAE/AES Joint Translational Task Force
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force created the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve standardization of experimental designs. This article concerns the parameters that can be measured to assess the physiologic condition of the animals that are used to study rodent models of epilepsy. Here we discuss CDEs for physiologic parameters measured in adult rats and mice such as general health status, temperature, cardiac and respiratory function, and blood constituents. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript we discuss the monitoring of different aspects of physiology of the animals. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of biomarkers and new treatments for epilepsy
Recommended from our members
Effect of spontaneous seizures on GABAA receptor α4 subunit expression in an animal model of temporal lobe epilepsy.
ObjectiveTemporal lobe epilepsy (TLE) is frequently medically intractable and often progressive. Compromised inhibitory neurotransmission due to altered γ-aminobutyric acid (GABA)A receptor α4 subunit (GABAA Rα4) expression has been emphasized as a potential contributor to the initial development of epilepsy following a brain insult (primary epileptogenesis), but the regulation of GABAA Rα4 during chronic epilepsy, specifically, how expression is altered following spontaneous seizures, is less well understood.MethodsContinuous video-electroencephalography (EEG) recordings from rats with pilocarpine-induced TLE were used to capture epileptic animals within 3 h of a spontaneous seizure (SS), or >24 h after the last SS, to determine whether recent occurrence of a seizure was associated with altered levels of GABAA Rα4 expression. We further evaluated whether this GABAA Rα4 plasticity is regulated by signaling mechanisms active in primary epileptogenesis, specifically, increases in brain-derived neurotrophic factor (BDNF) and early growth response factor 3 (Egr3).ResultsElevated levels of GABAA Rα4 messenger RNA (mRNA) and protein were observed following spontaneous seizures, and were associated with higher levels of BDNF and Egr3 mRNA.SignificanceThese data suggest that spontaneous, recurrent seizures that define chronic epilepsy may influence changes in GABAA Rα4 expression, and that signaling pathways known to regulate GABAA Rα4 expression after status epilepticus may also be activated after spontaneous seizures in chronically epileptic animals
Antiepileptic and Antiepileptogenic Performance of Carisbamate after Head Injury in the Rat: Blind and Randomized Studies
Carisbamate (CRS) exhibits broad acute anticonvulsant activity in conventional anticonvulsant screens, genetic models of absence epilepsy and audiogenic seizures, and chronic spontaneous motor seizures arising after chemoconvulsant-induced status epilepticus. In add-on phase III trials with pharmacoresistant patients CRS induced <30% average decreases in partial-onset seizure frequency. We assessed the antiepileptogenic and antiepileptic performance of subchronic CRS administration on posttraumatic epilepsy (PTE) induced by rostral parasaggital fluid percussion injury (rpFPI), which closely replicates human contusive closed head injury. Studies were blind and randomized, and treatment effects were assessed on the basis of sensitive electrocorticography (ECoG) recordings. Antiepileptogenic effects were assessed in independent groups of control and CRS-treated rats, at 1 and 3 months postinjury, after completion of a 2-week prophylactic treatment initiated 15 min after injury. The antiepileptic effects of 1-week CRS treatments were assessed in repeated measures experiments at 1 and 4 months postinjury. The studies were powered to detect ∼50 and ∼40% decreases in epilepsy incidence and frequency of seizures, respectively. Drug/vehicle treatment, ECoG analysis, and [CRS]plasma determination all were performed blind. We detected no antiepileptogenic and an equivocal transient antiepileptic effects of CRS despite [CRS]plasma comparable with or higher than levels attained in previous preclinical and clinical studies. These findings contrast with previous preclinical data demonstrating large efficacy of CRS, but agree with the average effect of CRS seen in clinical trials. The data support the use of rpFPI-induced PTE in the adolescent rat as a model of pharmacoresistant epilepsy for preclinical development
A Novel Long-term, Multi-Channel and Non-invasive Electrophysiology Platform for Zebrafish
Zebrafish are a popular vertebrate model for human neurological disorders and drug discovery. Although fecundity, breeding convenience, genetic homology and optical transparency have been key advantages, laborious and invasive procedures are required for electrophysiological studies. Using an electrode-integrated microfluidic system, here we demonstrate a novel multichannel electrophysiology unit to record multiple zebrafish. This platform allows spontaneous alignment of zebrafish and maintains, over days, close contact between head and multiple surface electrodes, enabling non-invasive long-term electroencephalographic recording. First, we demonstrate that electrographic seizure events, induced by pentylenetetrazole, can be reliably distinguished from eye or tail movement artifacts, and quantifiably identified with our unique algorithm. Second, we show long-term monitoring during epileptogenic progression in a scn1lab mutant recapitulating human Dravet syndrome. Third, we provide an example of cross-over pharmacology antiepileptic drug testing. Such promising features of this integrated microfluidic platform will greatly facilitate high-throughput drug screening and electrophysiological characterization of epileptic zebrafish