63 research outputs found

    Geometric representations for minimalist grammars

    Full text link
    We reformulate minimalist grammars as partial functions on term algebras for strings and trees. Using filler/role bindings and tensor product representations, we construct homomorphisms for these data structures into geometric vector spaces. We prove that the structure-building functions as well as simple processors for minimalist languages can be realized by piecewise linear operators in representation space. We also propose harmony, i.e. the distance of an intermediate processing step from the final well-formed state in representation space, as a measure of processing complexity. Finally, we illustrate our findings by means of two particular arithmetic and fractal representations.Comment: 43 pages, 4 figure

    Spectral and Dynamical Properties in Classes of Sparse Networks with Mesoscopic Inhomogeneities

    Full text link
    We study structure, eigenvalue spectra and diffusion dynamics in a wide class of networks with subgraphs (modules) at mesoscopic scale. The networks are grown within the model with three parameters controlling the number of modules, their internal structure as scale-free and correlated subgraphs, and the topology of connecting network. Within the exhaustive spectral analysis for both the adjacency matrix and the normalized Laplacian matrix we identify the spectral properties which characterize the mesoscopic structure of sparse cyclic graphs and trees. The minimally connected nodes, clustering, and the average connectivity affect the central part of the spectrum. The number of distinct modules leads to an extra peak at the lower part of the Laplacian spectrum in cyclic graphs. Such a peak does not occur in the case of topologically distinct tree-subgraphs connected on a tree. Whereas the associated eigenvectors remain localized on the subgraphs both in trees and cyclic graphs. We also find a characteristic pattern of periodic localization along the chains on the tree for the eigenvector components associated with the largest eigenvalue equal 2 of the Laplacian. We corroborate the results with simulations of the random walk on several types of networks. Our results for the distribution of return-time of the walk to the origin (autocorrelator) agree well with recent analytical solution for trees, and it appear to be independent on their mesoscopic and global structure. For the cyclic graphs we find new results with twice larger stretching exponent of the tail of the distribution, which is virtually independent on the size of cycles. The modularity and clustering contribute to a power-law decay at short return times

    Complementarity in classical dynamical systems

    Full text link
    The concept of complementarity, originally defined for non-commuting observables of quantum systems with states of non-vanishing dispersion, is extended to classical dynamical systems with a partitioned phase space. Interpreting partitions in terms of ensembles of epistemic states (symbols) with corresponding classical observables, it is shown that such observables are complementary to each other with respect to particular partitions unless those partitions are generating. This explains why symbolic descriptions based on an \emph{ad hoc} partition of an underlying phase space description should generally be expected to be incompatible. Related approaches with different background and different objectives are discussed.Comment: 18 pages, no figure

    Network theory approach for data evaluation in the dynamic force spectroscopy of biomolecular interactions

    Get PDF
    Investigations of molecular bonds between single molecules and molecular complexes by the dynamic force spectroscopy are subject to large fluctuations at nanoscale and possible other aspecific binding, which mask the experimental output. Big efforts are devoted to develop methods for effective selection of the relevant experimental data, before taking the quantitative analysis of bond parameters. Here we present a methodology which is based on the application of graph theory. The force-distance curves corresponding to repeated pulling events are mapped onto their correlation network (mathematical graph). On these graphs the groups of similar curves appear as topological modules, which are identified using the spectral analysis of graphs. We demonstrate the approach by analyzing a large ensemble of the force-distance curves measured on: ssDNA-ssDNA, peptide-RNA (system from HIV1), and peptide-Au surface. Within our data sets the methodology systematically separates subgroups of curves which are related to different intermolecular interactions and to spatial arrangements in which the molecules are brought together and/or pulling speeds. This demonstrates the sensitivity of the method to the spatial degrees of freedom, suggesting potential applications in the case of large molecular complexes and situations with multiple binding sites

    Epistemic Entanglement due to Non-Generating Partitions of Classical Dynamical Systems

    Full text link
    Quantum entanglement relies on the fact that pure quantum states are dispersive and often inseparable. Since pure classical states are dispersion-free they are always separable and cannot be entangled. However, entanglement is possible for epistemic, dispersive classical states. We show how such epistemic entanglement arises for epistemic states of classical dynamical systems based on phase space partitions that are not generating. We compute epistemically entangled states for two coupled harmonic oscillators.Comment: 13 pages, no figures; International Journal of Theoretical Physics, 201

    Extended Recurrence Plot Analysis and its Application to ERP Data

    Get PDF
    We present new measures of complexity and their application to event related potential data. The new measures base on structures of recurrence plots and makes the identification of chaos-chaos transitions possible. The application of these measures to data from single-trials of the Oddball experiment can identify laminar states therein. This offers a new way of analyzing event-related activity on a single-trial basis.Comment: 21 pages, 8 figures; article for the workshop ''Analyzing and Modelling Event-Related Brain Potentials: Cognitive and Neural Approaches`` at November 29 - December 01, 2001 in Potsdam, German
    corecore