13 research outputs found

    Selective inhibition of T suppressor-cell function by a monosaccharide

    Get PDF
    Interactions between regulatory T lymphocytes and other cells are assumed to occur at the level of the cell surface. T cells which suppress the generation of specifically effector cells have been described as having antigenic, idiotypic, allotypic and I-region specificity1−4. Other T suppressor cells generated by in vitro cultivation with or without mitogenic stimulation5,6 have suppressive activity for T and B cells but no specificity can be assigned to them. These T suppressor cells (Ts) inhibit various lymphoid functions—this either reflects their polyclonal origin or indicates that the structures recognized by the Ts receptors must be common for many cell types. Carbohydrates on cell membrane-inserted glycoproteins or glycolipids might function as specific ligands for recognition by cellular receptors or soluble factors. Almost all cell-surface proteins of mammalian cells are glycosylated. There is evidence for lectin-like carbohydrate binding proteins not only in plants7 but also in toxins8, viruses9, prokaryotic cells10 and even mammalian cells, including T cells11. A functional role for these lectin-like proteins has been described for slime moulds and suggested for the selective association of embryonic cells12,13. We report here that addition of a monosaccharide can counteract the effect of T suppressor cells during the generation of alloreactive cytotoxic T cells (CTLs) in vitro

    Monoclonal antibodies against carbohydrate differentiation antigens identify subsets of primary sensory neurones.

    No full text
    Dorsal root ganglion (DRG) neurones transmit cutaneous sensory information from the periphery to the spinal cord. Within the dorsal horn of the spinal cord, classes of sensory fibres that are activated by different cutaneous stimuli terminate in separate and highly restricted laminae. Although the developmental events resulting in the laminar organization of sensory afferent terminals have not been defined, it is likely that interactions between surface molecules on DRG and dorsal horn neurones are involved in the generation of afferent synaptic connections. The identification of surface antigens that distinguish functional subclasses of DRG neurones would represent a first step in establishing the existence and nature of such molecules. We report here that monoclonal antibodies directed against carbohydrate differentiation antigens identify cytoplasmic and cell surface molecules expressed selectively by functional subsets of DRG neurons
    corecore